= "Gh -> Gh, QCD, only UV divergences, 1-loop";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
We keep scaleless B0 functions, since otherwise the UV part would not come out right.
= True; $KeepLogDivergentScalelessIntegrals
= InsertFields[CreateTopologies[1, 1 -> 1, ExcludeTopologies -> {Tadpoles}],
diags {U[5]} -> {U[5]}, InsertionLevel -> {Particles}, Model -> "SMQCD"];
[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {256, 256}]; SheetHeader
The 1/(2Pi)^D prefactor is implicit.
[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True, GaugeRules -> {},
amp-> 1], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q},
PreFactor -> True, ChangeDimension -> D, List -> False, SMP -> True,
UndoChiralSplittings -> True, Contract -> True] DropSumOver
-\left(g_s^2 f^{\text{Glu1}\;\text{Glu3}\;\text{Glu4}} f^{\text{Glu2}\;\text{Glu3}\;\text{Glu4}} \left(\frac{\left(1-\xi _g\right) \left(p^2-p\cdot q\right) \left(q^2-p\cdot q\right)}{q^2.(q-p)^4}+\frac{p\cdot q}{q^2.(q-p)^2}\right)\right)
[1] = amp[0] // SUNSimplify // TID[#, q, ToPaVe -> True] & amp
-\frac{1}{4} i \pi ^2 p^2 C_A \left(1-\xi _g\right) g_s^2 \;\text{B}_0(0,0,0) \delta ^{\text{Glu1}\;\text{Glu2}}-\frac{1}{2} i \pi ^2 p^2 C_A g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{B}_0\left(p^2,0,0\right)+\frac{1}{4} i \pi ^2 p^4 C_A \left(1-\xi _g\right) g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}} \;\text{C}_0\left(0,p^2,p^2,0,0,0\right)
The UV divergence of the amplitude can be obtained via PaVeUVPart. Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint: If you need the full result for the amplitude, use PaXEvaluate from FeynHelpers.
[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
ampDiv[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
FCReplaceD[#, Epsilon] & // Simplify SelectNotFree2
\frac{i p^2 C_A \left(\xi _g-3\right) g_s^2 \delta ^{\text{Glu1}\;\text{Glu2}}}{64 \pi ^2 \varepsilon }
The self-energy amplitude is usually defined as (p^2 delta^ab Pi(p^2)
pi[0] = FCI[ampDiv[0]/(I SUNDelta[SUNIndex[Glu1], SUNIndex[Glu2]]*SPD[p, p])] //Cancel
\frac{C_A \left(\xi _g-3\right) g_s^2}{64 \pi ^2 \varepsilon }
= -SMP["g_s"]^2/(4 Pi)^2 CA (3 - GaugeXi[g])/4*1/Epsilon;
knownResult [pi[0], knownResult,
FCCompareResultsText -> {"\tCompare to Muta, Foundations of QCD, Eq. 2.5.136:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\text{$\backslash $tCompare to Muta, Foundations of QCD, Eq. 2.5.136:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }17.793\text{ s.}