Load
FeynCalc and the necessary add-ons or other packages
description = "Gh -> Gh, QCD, only UV divergences, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
We keep scaleless B0 functions, since otherwise the UV part would not
come out right.
$KeepLogDivergentScalelessIntegrals = True;
Generate Feynman diagrams
diags = InsertFields[CreateTopologies[1, 1 -> 1, ExcludeTopologies -> {Tadpoles}],
{U[5]} -> {U[5]}, InsertionLevel -> {Particles}, Model -> "SMQCD"];
Paint[diags, ColumnsXRows -> {1, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {256, 256}];

Obtain the amplitude
The 1/(2Pi)^D prefactor is implicit.
amp[0] = FCFAConvert[CreateFeynAmp[diags, Truncated -> True, GaugeRules -> {},
PreFactor -> 1], IncomingMomenta -> {p}, OutgoingMomenta -> {p}, LoopMomenta -> {q},
UndoChiralSplittings -> True, ChangeDimension -> D, List -> False, SMP -> True,
DropSumOver -> True, Contract -> True]
−(gs2fGlu1Glu3Glu4fGlu2Glu3Glu4(q2.(q−p)4(1−ξg)(p2−p⋅q)(q2−p⋅q)+q2.(q−p)2p⋅q))
Calculate the amplitude
amp[1] = amp[0] // SUNSimplify // TID[#, q, ToPaVe -> True] &
−41iπ2p2CA(1−ξg)gs2B0(0,0,0)δGlu1Glu2−21iπ2p2CAgs2δGlu1Glu2B0(p2,0,0)+41iπ2p4CA(1−ξg)gs2δGlu1Glu2C0(0,p2,p2,0,0,0)
The UV divergence of the amplitude can be obtained via PaVeUVPart.
Here we also need to reintroduce the implicit 1/(2Pi)^D prefactor. Hint:
If you need the full result for the amplitude, use PaXEvaluate from
FeynHelpers.
ampDiv[0] = PaVeUVPart[amp[1], Prefactor -> 1/(2 Pi)^D] //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
SelectNotFree2[#, Epsilon] & // Simplify
64π2εip2CA(ξg−3)gs2δGlu1Glu2
The self-energy amplitude is usually defined as (p^2 delta^ab
Pi(p^2)
pi[0] = FCI[ampDiv[0]/(I SUNDelta[SUNIndex[Glu1], SUNIndex[Glu2]]*SPD[p, p])] //Cancel
64π2εCA(ξg−3)gs2
Check the final results
knownResult = -SMP["g_s"]^2/(4 Pi)^2 CA (3 - GaugeXi[g])/4*1/Epsilon;
FCCompareResults[pi[0], knownResult,
Text -> {"\tCompare to Muta, Foundations of QCD, Eq. 2.5.136:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Muta, Foundations of QCD, Eq. 2.5.136:CORRECT.
\tCPU Time used: 17.793 s.