Load
FeynCalc and the necessary add-ons or other packages
This example uses a custom phi^4 model created with FeynRules. Please
evaluate the file FeynCalc/Examples/FeynRules/Phi4/GenerateModelPhi4.m
before running it for the first time.
description = "Renormalization, phi^4, MS and MSbar, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
We keep scaleless B0 functions, since otherwise the UV part would not
come out right.
$KeepLogDivergentScalelessIntegrals = True;
FAPatch[PatchModelsOnly -> True];
(*Successfully patched FeynArts.*)
Generate Feynman diagrams
params = {InsertionLevel -> {Particles}, Model -> FileNameJoin[{"Phi4", "Phi4"}],
GenericModel -> FileNameJoin[{"Phi4", "Phi4"}]};
top[i_, j_] := CreateTopologies[1, i -> j];
topCT[i_, j_] := CreateCTTopologies[1, i -> j];
topVertex[i_, j_] := CreateTopologies[1, i -> j,
ExcludeTopologies -> {WFCorrections}];
topVertexCT[i_, j_] := CreateCTTopologies[1, i -> j,
ExcludeTopologies -> {WFCorrectionCTs}];
{diagPhi4SE, diagPhi4SECT} = InsertFields[#, {S[1]} -> {S[1]},
Sequence @@ params] & /@ {top[1, 1], topCT[1, 1]};
{diagVertex, diagVertexCT} = InsertFields[#, {S[1], S[1]} -> {S[1], S[1]},
Sequence @@ params] & /@ {topVertex[2, 2], topVertexCT[2, 2]};
diag1[0] = diagPhi4SE[[0]][Sequence @@ diagPhi4SE,
Sequence @@ diagPhi4SECT];
diag2[0] = diagVertex[[0]][Sequence @@ diagVertex,
Sequence @@ diagVertexCT];
Paint[diag1[0], ColumnsXRows -> {2, 1}, SheetHeader -> None,
Numbering -> Simple, ImageSize -> {512, 256}];

Paint[diag2[0], ColumnsXRows -> {2, 1}, SheetHeader -> None,
Numbering -> Simple, ImageSize -> {512, 256}];


Obtain the amplitudes
The 1/(2Pi)^D prefactor is implicit.
Self-energy including the counter-term
amp1[0] = FCFAConvert[CreateFeynAmp[diag1[0], Truncated -> True,
GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p}, OutgoingMomenta -> {p},
LorentzIndexNames -> {mu},
LoopMomenta -> {l}, UndoChiralSplittings -> True,
ChangeDimension -> D, List -> False, SMP -> True,
FinalSubstitutions -> {Zm -> SMP["Z_m"], Zphi -> SMP["Z_phi"],
GaugeXi[S[1]] -> 1, Mphi -> m}]
2(l2−m2)g−im2(ZmZϕ−1)+ip2(Zϕ−1)
Quartic vertex including the counter-term
amp2[0] = FCFAConvert[CreateFeynAmp[diag2[0], Truncated -> True,
GaugeRules -> {}, PreFactor -> 1],
IncomingMomenta -> {p1, p2}, OutgoingMomenta -> {p3, p4},
LorentzIndexNames -> {mu}, LoopMomenta -> {l},
UndoChiralSplittings -> True, ChangeDimension -> D,
List -> False, SMP -> True, FinalSubstitutions -> {Zg -> SMP["Z_g"],
Zphi -> SMP["Z_phi"], GaugeXi[S[1]] -> 1, Mphi -> m}]
2(l2−m2).((l+p2−p3)2−m2)g2+2(l2−m2).((l+p2−p4)2−m2)g2+2(l2−m2).((l−p3−p4)2−m2)g2−ig(ZgZϕ2−1)
Calculate the amplitudes
Self-energy
amp1[1] = amp1[0] // ReplaceAll[#, {SMP["Z_phi"] -> 1 + alpha SMP["d_phi"],
SMP["Z_m"] -> 1 + alpha SMP["d_m"]}] & // Series[#, {alpha, 0, 1}] & //
Normal // ReplaceAll[#, alpha -> 1] &
2(l2−m2)g−im2(δϕ+δm)+ip2δϕ
Express the self-energy in tems of the Passarino-Veltman coefficient
functions.
amp1[2] = ToPaVe[amp1[1], l]
21iπ2gA0(m2)−i(m2δϕ+m2δm−p2δϕ)
Discard all the finite pieces of the 1-loop amplitude
amp1Div[0] = PaVeUVPart[amp1[2], Prefactor -> 1/(2 Pi)^D] //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
FCHideEpsilon // SelectNotFree2[#, {SMP["Delta"], SMP["d_m"],
SMP["d_phi"]}] & // Simplify
32π2iΔgm2−i(m2δm+δϕ(m2−p2))
Equating the result to zero and solving for d_phi and d_m we obtain
the renormalization constants in the minimal subtraction schemes.
sol[1] = Solve[SelectNotFree2[amp1Div[0], p] == 0,
SMP["d_phi"]] // Flatten // Simplify;
sol[2] = Solve[(SelectFree2[amp1Div[0], p] == 0) /. sol[1],
SMP["d_m"]] // Flatten // Simplify;
solMS1 = Join[sol[1], sol[2]] /. {
SMP["d_phi"] -> SMP["d_phi^MS"],
SMP["d_m"] -> SMP["d_m^MS"], SMP["Delta"] -> 1/Epsilon
}
solMSbar1 = Join[sol[1], sol[2]] /. {
SMP["d_phi"] -> SMP["d_phi^MSbar"],
SMP["d_m"] -> SMP["d_m^MSbar"]
}
{δϕMS→0,δmMS→32π2εg}
{δϕMS−−−→0,δmMS−−−→32π2Δg}
Quartic vertex
amp2[1] = amp2[0] // ReplaceRepeated[#, {SMP["Z_g"] -> 1 + alpha SMP["d_g"],
SMP["Z_phi"] -> 1 + alpha SMP["d_phi"]}] & //
Series[#, {alpha, 0, 1}] & // Normal // ReplaceAll[#, alpha -> 1] &
21((l2−m2).((l+p2−p3)2−m2)g2+(l2−m2).((l+p2−p4)2−m2)g2+(l2−m2).((l−p3−p4)2−m2)g2)−ig(2δϕ+δg)
Express the quartic vertex in tems of the Passarino-Veltman
coefficient functions.
amp2[2] = ToPaVe[amp2[1], l]
21iπ2g2B0(p22−2(p2⋅p3)+p32,m2,m2)+21iπ2g2B0(p22−2(p2⋅p4)+p42,m2,m2)+21iπ2g2B0(p32+2(p3⋅p4)+p42,m2,m2)−ig(2δϕ+δg)
Discard all the finite pieces of the 1-loop amplitude
amp2Div[0] = PaVeUVPart[amp2[2], Prefactor -> 1/(2 Pi)^D] //
FCReplaceD[#, D -> 4 - 2 Epsilon] & // Series[#, {Epsilon, 0, 0}] & // Normal //
FCHideEpsilon // SelectNotFree2[#, {SMP["Delta"], SMP["d_g"], SMP["d_phi"]}] & // Simplify
321ig(π23Δg−32(2δϕ+δg))
sol[3] = Solve[(amp2Div[0] == 0) /. sol[1],
SMP["d_g"]] // Flatten // Simplify;
solMS2 = sol[3] /. {
SMP["d_g"] -> SMP["d_g^MS"],
SMP["Delta"] -> 1/Epsilon
}
solMSbar2 = sol[3] /. {
SMP["d_g"] -> SMP["d_g^MSbar"]
}
{δgMS→32π2ε3g}
{δgMS−−−→32π23Δg}
Check the final results
knownResult = {
SMP["d_phi^MS"] -> 0,
SMP["d_m^MS"] -> (g*1/Epsilon)/(32*Pi^2),
SMP["d_g^MS"] -> (3*g*1/Epsilon)/(32*Pi^2),
SMP["d_phi^MSbar"] -> 0,
SMP["d_m^MSbar"] -> (g*SMP["Delta"])/(32*Pi^2),
SMP["d_g^MSbar"] -> (3*g*SMP["Delta"])/(32*Pi^2)
};
FCCompareResults[Join[solMS1, solMS2, solMSbar1, solMSbar2], knownResult,
Text -> {"\tCompare to Bailin and Love, Introduction to Gauge Field Theory, Eqs. 7.73-7.74 and Eqs. 7.76-7.77:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Bailin and Love, Introduction to Gauge Field Theory, Eqs. 7.73-7.74 and Eqs. 7.76-7.77:CORRECT.
\tCPU Time used: 25.751 s.