This example uses a custom Phi^4 model created with FeynRules. Please evaluate the file FeynCalc/Examples/FeynRules/Phi4/GenerateModelPhi4.m before running it for the first time.
= "Phi Phi -> Phi Phi, Phi^4, asymptotic limit, 1-loop";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
[PatchModelsOnly -> True];
FAPatch
(*Successfully patched FeynArts.*)
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[1, 2 -> 2,
diags -> {WFCorrections}],
ExcludeTopologies {S[1], S[1]} -> {S[1], S[1]}, InsertionLevel -> {Classes},
-> FileNameJoin[{"Phi4", "Phi4"}]];
Model [diags, ColumnsXRows -> {3, 1}, Numbering -> None, SheetHeader -> None,
PaintImageSize -> {512, 256}];
= InsertFields[CreateCTTopologies[1, 2 -> 2,
diagsCT -> {WFCorrectionCTs}], {S[1], S[1]} -> {S[1], S[1]},
ExcludeTopologies -> {Classes}, Model -> FileNameJoin[{"Phi4", "Phi4"}]];
InsertionLevel [diagsCT, ColumnsXRows -> {1, 1}, Numbering -> None, SheetHeader -> None,
PaintImageSize -> {256, 256}];
The 1/(2Pi)^D prefactor is implicit.
[0] = FCFAConvert[CreateFeynAmp[diags, PreFactor -> 1],
amp-> {p1, p2}, OutgoingMomenta -> {k1, k2},
IncomingMomenta -> {q}, ChangeDimension -> D, List -> False,
LoopMomenta -> {Mphi -> m}] FinalSubstitutions
\frac{g^2}{2 \left(q^2-m^2\right).\left((-k_1-k_2+q){}^2-m^2\right)}+\frac{g^2}{2 \left(q^2-m^2\right).\left((-k_1+p_2+q){}^2-m^2\right)}+\frac{g^2}{2 \left(q^2-m^2\right).\left((-k_2+p_2+q){}^2-m^2\right)}
[0] = FCFAConvert[CreateFeynAmp[diagsCT, PreFactor -> 1],
ampCT-> {p1, p2}, OutgoingMomenta -> {k1, k2},
IncomingMomenta -> {q}, ChangeDimension -> D, List -> False,
LoopMomenta -> {Mphi -> m, Zg -> 1 + SMP["d_g^MSbar"]}] FinalSubstitutions
-i g \left(\text{Zphi}^2 \left(\delta _g^{\overset{---}{\text{MS}}}+1\right)-1\right)
For simplicity, let us consider the massless case
[]
FCClearScalarProducts[s, t, u, p1, p2, -k1, -k2, 0, 0, 0, 0]; SetMandelstam
[1] = amp[0] // ReplaceAll[#, m -> 0] & // ToPaVe[#, q] & amp
\frac{1}{2} i \pi ^2 g^2 \;\text{B}_0(s,0,0)+\frac{1}{2} i \pi ^2 g^2 \;\text{B}_0(t,0,0)+\frac{1}{2} i \pi ^2 g^2 \;\text{B}_0(u,0,0)
The explicit value of the integral can be obtained from Package-X via the FeynHelpers add-on.
= {
loopInt [s_, 0, 0] :> -(-2 + Log[4*Pi] -
B0Log[(-4*Pi*ScaleMu^2)/s])/(16*Pi^4) + SMP["Delta"]/(16*Pi^4)
};
[2] = (amp[1] /. loopInt) // Simplify amp
-\frac{i g^2 \left(-3 \Delta -\log \left(-\frac{4 \pi \mu ^2}{s}\right)-\log \left(-\frac{4 \pi \mu ^2}{t}\right)-\log \left(-\frac{4 \pi \mu ^2}{u}\right)-6+3 \log (4 \pi )\right)}{32 \pi ^2}
[0] = Expand[(amp[2] + ampCT[0]) /.
ampFull{SMP["d_g^MSbar"] -> (3*g*SMP["Delta"])/(32*Pi^2), Zphi -> 1}]
\frac{i g^2 \log \left(-\frac{4 \pi \mu ^2}{s}\right)}{32 \pi ^2}+\frac{i g^2 \log \left(-\frac{4 \pi \mu ^2}{t}\right)}{32 \pi ^2}+\frac{i g^2 \log \left(-\frac{4 \pi \mu ^2}{u}\right)}{32 \pi ^2}+\frac{3 i g^2}{16 \pi ^2}-\frac{3 i g^2 \log (4 \pi )}{32 \pi ^2}
[FreeQ[ampFull[0], SMP["Delta"]], True,
FCCompareResultsText -> {"\tThe UV divergence is cancelled by the counter-term:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
\text{$\backslash $tThe UV divergence is cancelled by the counter-term:} \;\text{CORRECT.}
Now let us look at the asymptotic limit where s goes to infinity and t is fixed
[0] = Series[ampFull[0] /. u -> -s - t, {s, Infinity, 0}] // Normal ampFullAsy
-\frac{i \left(g^2 \left(-\log \left(-\frac{4 \pi \mu ^2}{s}\right)\right)-g^2 \log \left(\frac{4 \pi \mu ^2}{s}\right)-g^2 \log \left(-\frac{4 \pi \mu ^2}{t}\right)-6 g^2+3 g^2 \log (4 \pi )\right)}{32 \pi ^2}
The leading order behavior is governed by the log of s
[1] = ampFullAsy[0] // PowerExpand // SelectNotFree2[#, s] & ampFullAsy
-\frac{i g^2 \log (s)}{16 \pi ^2}
= ((-I/16)*g^2*Log[s])/Pi^2;
knownResult [ampFullAsy[1], knownResult,
FCCompareResultsText -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Ex 10.4:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\text{$\backslash $tCompare to Peskin and Schroeder, An Introduction to QFT, Ex 10.4:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }25.667\text{ s.}