Load
FeynCalc and the necessary add-ons or other packages
This example uses a custom Phi^4 model created with FeynRules. Please
evaluate the file FeynCalc/Examples/FeynRules/Phi4/GenerateModelPhi4.m
before running it for the first time.
description = "Phi Phi -> Phi Phi, Phi^4, asymptotic limit, 1-loop";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
FAPatch[PatchModelsOnly -> True];
(*Successfully patched FeynArts.*)
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[1, 2 -> 2,
ExcludeTopologies -> {WFCorrections}],
{S[1], S[1]} -> {S[1], S[1]}, InsertionLevel -> {Classes},
Model -> FileNameJoin[{"Phi4", "Phi4"}]];
Paint[diags, ColumnsXRows -> {3, 1}, Numbering -> None, SheetHeader -> None,
ImageSize -> {512, 256}];

diagsCT = InsertFields[CreateCTTopologies[1, 2 -> 2,
ExcludeTopologies -> {WFCorrectionCTs}], {S[1], S[1]} -> {S[1], S[1]},
InsertionLevel -> {Classes}, Model -> FileNameJoin[{"Phi4", "Phi4"}]];
Paint[diagsCT, ColumnsXRows -> {1, 1}, Numbering -> None, SheetHeader -> None,
ImageSize -> {256, 256}];

Obtain the amplitude
The 1/(2Pi)^D prefactor is implicit.
amp[0] = FCFAConvert[CreateFeynAmp[diags, PreFactor -> 1],
IncomingMomenta -> {p1, p2}, OutgoingMomenta -> {k1, k2},
LoopMomenta -> {q}, ChangeDimension -> D, List -> False,
FinalSubstitutions -> {Mphi -> m}]
2(q2−m2).((−k1−k2+q)2−m2)g2+2(q2−m2).((−k1+p2+q)2−m2)g2+2(q2−m2).((−k2+p2+q)2−m2)g2
ampCT[0] = FCFAConvert[CreateFeynAmp[diagsCT, PreFactor -> 1],
IncomingMomenta -> {p1, p2}, OutgoingMomenta -> {k1, k2},
LoopMomenta -> {q}, ChangeDimension -> D, List -> False,
FinalSubstitutions -> {Mphi -> m, Zg -> 1 + SMP["d_g^MSbar"]}]
−ig(Zphi2(δgMS−−−+1)−1)
Fix the kinematics
For simplicity, let us consider the massless case
FCClearScalarProducts[]
SetMandelstam[s, t, u, p1, p2, -k1, -k2, 0, 0, 0, 0];
Calculate the amplitude
amp[1] = amp[0] // ReplaceAll[#, m -> 0] & // ToPaVe[#, q] &
21iπ2g2B0(s,0,0)+21iπ2g2B0(t,0,0)+21iπ2g2B0(u,0,0)
The explicit value of the integral can be obtained from Package-X via
the FeynHelpers add-on.
loopInt = {
B0[s_, 0, 0] :> -(-2 + Log[4*Pi] -
Log[(-4*Pi*ScaleMu^2)/s])/(16*Pi^4) + SMP["Delta"]/(16*Pi^4)
};
amp[2] = (amp[1] /. loopInt) // Simplify
−32π2ig2(−3Δ−log(−s4πμ2)−log(−t4πμ2)−log(−u4πμ2)−6+3log(4π))
ampFull[0] = Expand[(amp[2] + ampCT[0]) /.
{SMP["d_g^MSbar"] -> (3*g*SMP["Delta"])/(32*Pi^2), Zphi -> 1}]
32π2ig2log(−s4πμ2)+32π2ig2log(−t4πμ2)+32π2ig2log(−u4πμ2)+16π23ig2−32π23ig2log(4π)
FCCompareResults[FreeQ[ampFull[0], SMP["Delta"]], True,
Text -> {"\tThe UV divergence is cancelled by the counter-term:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
\tThe UV divergence is cancelled by the counter-term:CORRECT.
Now let us look at the asymptotic limit where s goes to infinity and
t is fixed
ampFullAsy[0] = Series[ampFull[0] /. u -> -s - t, {s, Infinity, 0}] // Normal
−32π2i(g2(−log(−s4πμ2))−g2log(s4πμ2)−g2log(−t4πμ2)−6g2+3g2log(4π))
The leading order behavior is governed by the log of s
ampFullAsy[1] = ampFullAsy[0] // PowerExpand // SelectNotFree2[#, s] &
−16π2ig2log(s)
Check the final results
knownResult = ((-I/16)*g^2*Log[s])/Pi^2;
FCCompareResults[ampFullAsy[1], knownResult,
Text -> {"\tCompare to Peskin and Schroeder, An Introduction to QFT, Ex 10.4:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 4], 0.001], " s."];
\tCompare to Peskin and Schroeder, An Introduction to QFT, Ex 10.4:CORRECT.
\tCPU Time used: 25.667 s.