Load
FeynCalc and the necessary add-ons or other packages
description = "Mnel El -> Mnel El, MSSM, matrix element squared, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[11, {1}],
F[2, {1}]} -> {F[11, {1}], F[2, {1}]}, InsertionLevel -> {Classes},
Model -> MSSM, ExcludeParticles -> {S[1], S[2], S[3], S[4], V[_]}];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2},
OutgoingMomenta -> {k1, k2}, ChangeDimension -> 4, List -> False, SMP -> True,
DropSumOver -> True] //. {
USf[args1__][args2__] :>
USf[args2, args1], Index[Sfermion, 5] :> Sfe5,
Conjugate[ZNeu[a__]] :> ZNeuC[a],
Conjugate[USf[a_, b_, c_, d_]] :> USfC[a, b, c, d]}
(k1−p2)2−MSf(Sfe5,2,1)21(φ(k1,MNeu(1))).(2CBmW(cos(θW))(sin(θW))ieγˉ7((cos(θW))(CBZNeuC(1,2)mWUSf(Sfe5,1,2,1)−ZNeuC(1,3)meUSf(Sfe5,2,2,1))+CBZNeuC(1,1)mWUSf(Sfe5,1,2,1)(sin(θW)))−2CBmW(cos(θW))(sin(θW))ieγˉ6(2CBZNeu(1,1)mWUSf(Sfe5,2,2,1)(sin(θW))+ZNeu(1,3)meUSf(Sfe5,1,2,1)(cos(θW)))).(φ(p2,me))(φ(k2,me)).(2CBmW(cos(θW))(sin(θW))ieγˉ6(CBmWUSfC(Sfe5,1,2,1)(ZNeu(1,2)(cos(θW))+ZNeu(1,1)(sin(θW)))−ZNeu(1,3)meUSfC(Sfe5,2,2,1)(cos(θW)))−2CBmW(cos(θW))(sin(θW))ieγˉ7(2CBZNeuC(1,1)mWUSfC(Sfe5,2,2,1)(sin(θW))+ZNeuC(1,3)meUSfC(Sfe5,1,2,1)(cos(θW)))).(φ(p1,MNeu(1)))−(k1+k2)2−MSf(Sfe5,2,1)21(φ(k2,me)).(2CBmW(cos(θW))(sin(θW))ieγˉ6(CBmWUSfC(Sfe5,1,2,1)(ZNeu(1,2)(cos(θW))+ZNeu(1,1)(sin(θW)))−ZNeu(1,3)meUSfC(Sfe5,2,2,1)(cos(θW)))−2CBmW(cos(θW))(sin(θW))ieγˉ7(2CBZNeuC(1,1)mWUSfC(Sfe5,2,2,1)(sin(θW))+ZNeuC(1,3)meUSfC(Sfe5,1,2,1)(cos(θW)))).(φ(−k1,MNeu(1)))(φ(−p1,MNeu(1))).(2CBmW(cos(θW))(sin(θW))ieγˉ7((cos(θW))(CBZNeuC(1,2)mWUSf(Sfe5,1,2,1)−ZNeuC(1,3)meUSf(Sfe5,2,2,1))+CBZNeuC(1,1)mWUSf(Sfe5,1,2,1)(sin(θW)))−2CBmW(cos(θW))(sin(θW))ieγˉ6(2CBZNeu(1,1)mWUSf(Sfe5,2,2,1)(sin(θW))+ZNeu(1,3)meUSf(Sfe5,1,2,1)(cos(θW)))).(φ(p2,me))
{USf(Sfe5,1,2,1),USf(Sfe5,2,2,1)}
Fix the kinematics
FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, p2, -k1, -k2, MNeu[1], SMP["m_e"], MNeu[1], SMP["m_e"]];
Evaluate the amplitude
amp[1] = DiracSimplify[amp[0]];
ampCC[1] = ComplexConjugate[amp[1], Conjugate -> {ZNeuC, ZNeu, USf, USfC}] //. {
Conjugate[USf][a_, b_, c_, d_] :> USfC[a, b, c, d],
Conjugate[ZNeu][a__] :> ZNeuC[a],
Conjugate[ZNeuC][a__] :> ZNeu[a],
Conjugate[USfC][a_, b_, c_, d_] :> USf[a, b, c, d],
Sfe5 -> Sfe5c};
Square the amplitude
To avoid having too many terms, we isolate everything that is not
required to calculate the spin sums
amp[2] = Collect2[amp[1], Spinor, LorentzIndex, IsolateNames -> KK];
ampCC[2] = Collect2[ampCC[1], Spinor, LorentzIndex, IsolateNames -> KK];
ampSquared[0] = (amp[2] ampCC[2]) // FermionSpinSum // DiracSimplify;
For simplicity, we neglect the masses of the external particles.
ampSquared[1] = ampSquared[0] // FRH // PropagatorDenominatorExplicit //
ReplaceAll[#, {MNeu[1] -> 0, SMP["m_e"] -> 0}] & // Factor2 //
TrickMandelstam[#, {s, t, u, 0}] &;
As we will show below, the pieces that contain a Levi-Civita tensor
can be discarded, so we ignore them in the final result
ampSquared[2] = SelectFree2[ampSquared[1], Eps] // Simplify
−((e4((((s2+u2)MSf(Sfe5c,2,1)2+stu)MSf(Sfe5,2,1)2+su(tMSf(Sfe5c,2,1)2+2su))USf(Sfe5,1,2,1)USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)USfC(Sfe5c,1,2,1)ZNeu(1,2)2ZNeuC(1,2)2(cos(θW))4+2(((s2+u2)MSf(Sfe5c,2,1)2+stu)MSf(Sfe5,2,1)2+su(tMSf(Sfe5c,2,1)2+2su))(sin(θW))USf(Sfe5,1,2,1)USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)USfC(Sfe5c,1,2,1)ZNeu(1,2)ZNeuC(1,2)(ZNeu(1,2)ZNeuC(1,1)+ZNeu(1,1)ZNeuC(1,2))(cos(θW))3+(sin(θW))2(4(tMSf(Sfe5,2,1)2+2su)(tMSf(Sfe5c,2,1)2+2su)USf(Sfe5,2,2,1)USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)USfC(Sfe5c,2,2,1)ZNeu(1,1)ZNeu(1,2)ZNeuC(1,1)ZNeuC(1,2)+USf(Sfe5,1,2,1)USfC(Sfe5c,1,2,1)(4(tMSf(Sfe5,2,1)2+2su)(tMSf(Sfe5c,2,1)2+2su)USf(Sfe5c,2,2,1)USfC(Sfe5,2,2,1)ZNeu(1,1)ZNeu(1,2)ZNeuC(1,1)ZNeuC(1,2)+(((s2+u2)MSf(Sfe5c,2,1)2+stu)MSf(Sfe5,2,1)2+su(tMSf(Sfe5c,2,1)2+2su))USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)(ZNeu(1,2)2ZNeuC(1,1)2+4ZNeu(1,1)ZNeu(1,2)ZNeuC(1,2)ZNeuC(1,1)+ZNeu(1,1)2ZNeuC(1,2)2)))(cos(θW))2+2(sin(θW))3(USf(Sfe5,1,2,1)((((s2+u2)MSf(Sfe5c,2,1)2+stu)MSf(Sfe5,2,1)2+su(tMSf(Sfe5c,2,1)2+2su))USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)+2(tMSf(Sfe5,2,1)2+2su)(tMSf(Sfe5c,2,1)2+2su)USf(Sfe5c,2,2,1)USfC(Sfe5,2,2,1))USfC(Sfe5c,1,2,1)+2(tMSf(Sfe5,2,1)2+2su)(tMSf(Sfe5c,2,1)2+2su)USf(Sfe5,2,2,1)USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)USfC(Sfe5c,2,2,1))ZNeu(1,1)ZNeuC(1,1)(ZNeu(1,2)ZNeuC(1,1)+ZNeu(1,1)ZNeuC(1,2))(cos(θW))+(sin(θW))4(USf(Sfe5,1,2,1)((((s2+u2)MSf(Sfe5c,2,1)2+stu)MSf(Sfe5,2,1)2+su(tMSf(Sfe5c,2,1)2+2su))USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)+4(tMSf(Sfe5,2,1)2+2su)(tMSf(Sfe5c,2,1)2+2su)USf(Sfe5c,2,2,1)USfC(Sfe5,2,2,1))USfC(Sfe5c,1,2,1)+4USf(Sfe5,2,2,1)((tMSf(Sfe5,2,1)2+2su)(tMSf(Sfe5c,2,1)2+2su)USf(Sfe5c,1,2,1)USfC(Sfe5,1,2,1)+4(((s2+u2)MSf(Sfe5c,2,1)2+stu)MSf(Sfe5,2,1)2+su(tMSf(Sfe5c,2,1)2+2su))USf(Sfe5c,2,2,1)USfC(Sfe5,2,2,1))USfC(Sfe5c,2,2,1))ZNeu(1,1)2ZNeuC(1,1)2))/(4(s−MSf(Sfe5,2,1)2)(MSf(Sfe5,2,1)2−u)(s−MSf(Sfe5c,2,1)2)(u−MSf(Sfe5c,2,1)2)(cos(θW))4(sin(θW))4))
The explicit dependence on the Levi-Civita tensor vanishes once we
exploit the unitarity of the sfermion mixing matrix USf
discarded = SelectNotFree2[ampSquared[1], Eps] // Simplify
−((2ie4ZNeu(1,1)ZNeuC(1,1)(t+2u)(MSf(Sfe5,2,1)2−MSf(Sfe5c,2,1)2)(USf(Sfe5,1,2,1)USfC(Sfe5,2,2,1)USf(Sfe5c,2,2,1)USfC(Sfe5c,1,2,1)−USf(Sfe5,2,2,1)USfC(Sfe5,1,2,1)USf(Sfe5c,1,2,1)USfC(Sfe5c,2,2,1))ϵˉk1k2p1p2(ZNeu(1,2)(cos(θW))+ZNeu(1,1)(sin(θW)))(ZNeuC(1,2)(cos(θW))+ZNeuC(1,1)(sin(θW))))/((cos(θW))4(sin(θW))2(MSf(Sfe5,2,1)2−s)(s−MSf(Sfe5c,2,1)2)(u−MSf(Sfe5,2,1)2)(u−MSf(Sfe5c,2,1)2)))
Sum[discarded, {Sfe5, 1, 2}, {Sfe5c, 1, 2}] // Simplify // ReplaceRepeated[#,
{USf[1, 1, re__] USfC[1, 2, re__] :> -USf[2, 1, re] USfC[2, 2, re],
USf[1, 2, re__] USfC[1, 1, re__] :> -USf[2, 2, re] USfC[2, 1, re]
}] & // Simplify
0
Check the final results
knownResults = {
-(SMP["e"]^4*(SMP["sin_W"]^4*(USf[Sfe5, 1, 2, 1]*((s*u*(2*s*u + t*MSf[Sfe5c, 2, 1]^2) + MSf[Sfe5, 2, 1]^2*(s*t*u + (s^2 + u^2)*MSf[Sfe5c, 2, 1]^2))*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1] +
4*(2*s*u + t*MSf[Sfe5, 2, 1]^2)*(2*s*u + t*MSf[Sfe5c, 2, 1]^2)*USf[Sfe5c, 2, 2, 1]*USfC[Sfe5, 2, 2, 1])*USfC[Sfe5c, 1, 2, 1] +
4*USf[Sfe5, 2, 2, 1]*((2*s*u + t*MSf[Sfe5, 2, 1]^2)*(2*s*u + t*MSf[Sfe5c, 2, 1]^2)*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1] +
4*(s*u*(2*s*u + t*MSf[Sfe5c, 2, 1]^2) + MSf[Sfe5, 2, 1]^2*(s*t*u + (s^2 + u^2)*MSf[Sfe5c, 2, 1]^2))*USf[Sfe5c, 2, 2, 1]*USfC[Sfe5, 2, 2, 1])*USfC[Sfe5c, 2, 2, 1])*ZNeu[1, 1]^2*
ZNeuC[1, 1]^2 + (s*u*(2*s*u + t*MSf[Sfe5c, 2, 1]^2) + MSf[Sfe5, 2, 1]^2*(s*t*u + (s^2 + u^2)*MSf[Sfe5c, 2, 1]^2))*SMP["cos_W"]^4*USf[Sfe5, 1, 2, 1]*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1]*
USfC[Sfe5c, 1, 2, 1]*ZNeu[1, 2]^2*ZNeuC[1, 2]^2 + 2*SMP["cos_W"]*SMP["sin_W"]^3*
(USf[Sfe5, 1, 2, 1]*((s*u*(2*s*u + t*MSf[Sfe5c, 2, 1]^2) + MSf[Sfe5, 2, 1]^2*(s*t*u + (s^2 + u^2)*MSf[Sfe5c, 2, 1]^2))*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1] +
2*(2*s*u + t*MSf[Sfe5, 2, 1]^2)*(2*s*u + t*MSf[Sfe5c, 2, 1]^2)*USf[Sfe5c, 2, 2, 1]*USfC[Sfe5, 2, 2, 1])*USfC[Sfe5c, 1, 2, 1] +
2*(2*s*u + t*MSf[Sfe5, 2, 1]^2)*(2*s*u + t*MSf[Sfe5c, 2, 1]^2)*USf[Sfe5, 2, 2, 1]*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1]*USfC[Sfe5c, 2, 2, 1])*ZNeu[1, 1]*ZNeuC[1, 1]*
(ZNeu[1, 2]*ZNeuC[1, 1] + ZNeu[1, 1]*ZNeuC[1, 2]) + 2*(s*u*(2*s*u + t*MSf[Sfe5c, 2, 1]^2) + MSf[Sfe5, 2, 1]^2*(s*t*u + (s^2 + u^2)*MSf[Sfe5c, 2, 1]^2))*SMP["cos_W"]^3*SMP["sin_W"]*
USf[Sfe5, 1, 2, 1]*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1]*USfC[Sfe5c, 1, 2, 1]*ZNeu[1, 2]*ZNeuC[1, 2]*(ZNeu[1, 2]*ZNeuC[1, 1] + ZNeu[1, 1]*ZNeuC[1, 2]) +
SMP["cos_W"]^2*SMP["sin_W"]^2*(4*(2*s*u + t*MSf[Sfe5, 2, 1]^2)*(2*s*u + t*MSf[Sfe5c, 2, 1]^2)*USf[Sfe5, 2, 2, 1]*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1]*USfC[Sfe5c, 2, 2, 1]*ZNeu[1, 1]*
ZNeu[1, 2]*ZNeuC[1, 1]*ZNeuC[1, 2] + USf[Sfe5, 1, 2, 1]*USfC[Sfe5c, 1, 2, 1]*(4*(2*s*u + t*MSf[Sfe5, 2, 1]^2)*(2*s*u + t*MSf[Sfe5c, 2, 1]^2)*USf[Sfe5c, 2, 2, 1]*USfC[Sfe5, 2, 2, 1]*
ZNeu[1, 1]*ZNeu[1, 2]*ZNeuC[1, 1]*ZNeuC[1, 2] + (s*u*(2*s*u + t*MSf[Sfe5c, 2, 1]^2) + MSf[Sfe5, 2, 1]^2*(s*t*u + (s^2 + u^2)*MSf[Sfe5c, 2, 1]^2))*USf[Sfe5c, 1, 2, 1]*USfC[Sfe5, 1, 2, 1]*
(ZNeu[1, 2]^2*ZNeuC[1, 1]^2 + 4*ZNeu[1, 1]*ZNeu[1, 2]*ZNeuC[1, 1]*ZNeuC[1, 2] + ZNeu[1, 1]^2*ZNeuC[1, 2]^2)))))/
(4*(s - MSf[Sfe5, 2, 1]^2)*(-u + MSf[Sfe5, 2, 1]^2)*(s - MSf[Sfe5c, 2, 1]^2)*(u - MSf[Sfe5c, 2, 1]^2)*SMP["cos_W"]^4*SMP["sin_W"]^4)
};
FCCompareResults[{ampSquared[2]},
knownResults,
Text -> {"\tCompare to FormCalc:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to FormCalc:CORRECT.
\tCPU Time used: 19.299 s.