FeynRules manual (development version)

QCD BGF model for FeynArts

Load FeynRules

FR$Parallel = False;
$FeynRulesPath = FileNameJoin[{$UserBaseDirectory, "Applications", "FeynRules"}];
<< FeynRules`;

 - FeynRules - \text{ - FeynRules - }

Version:   2.3.49   (  29 September 2021  ).\text{Version: }\;\text{2.3.49}\;\text{ (} \;\text{29 September 2021}\;\text{).}

Authors: A. Alloul, N. Christensen, C. Degrande, C. Duhr, B. Fuks\text{Authors: A. Alloul, N. Christensen, C. Degrande, C. Duhr, B. Fuks}

$$$$

Please cite:\text{Please cite:}

 - Comput.Phys.Commun.185:2250-2300,2014 (arXiv:1310.1921);\text{ - Comput.Phys.Commun.185:2250-2300,2014 (arXiv:1310.1921);}

 - Comput.Phys.Commun.180:1614-1641,2009 (arXiv:0806.4194).\text{ - Comput.Phys.Commun.180:1614-1641,2009 (arXiv:0806.4194).}

$$$$

http://feynrules.phys.ucl.ac.be\text{http://feynrules.phys.ucl.ac.be}

$$$$

The FeynRules palette can be opened using the command FRPalette[].\text{The FeynRules palette can be opened using the command FRPalette[].}

Load FeynRules model

If[$FrontEnd === Null, 
   nbDir = DirectoryName[$InputFileName], 
   nbDir = NotebookDirectory[] 
  ];
frModelPath = FileNameJoin[{nbDir, "QCDBGF.fr"}];
LoadModel[frModelPath];

This model implementation was created by\text{This model implementation was created by}

Vladyslav Shtabovenko\text{Vladyslav Shtabovenko}

Model Version: 0\text{Model Version: }0

For more information, type ModelInformation[].\text{For more information, type ModelInformation[].}

\text{}

 - Loading particle classes.\text{ - Loading particle classes.}

 - Loading gauge group classes.\text{ - Loading gauge group classes.}

 - Loading parameter classes.\text{ - Loading parameter classes.}

\nModel   QCD in the background field formalism   loaded.\text{$\backslash $nModel }\;\text{QCD in the background field formalism}\;\text{ loaded.}

Generate Feynman rules

fRules = FeynmanRules[LQCD]

Starting Feynman rule calculation.\text{Starting Feynman rule calculation.}

Expanding the Lagrangian...\text{Expanding the Lagrangian...}

Collecting the different structures that enter the vertex.\text{Collecting the different structures that enter the vertex.}

17 possible non-zero vertices have been found -> starting the computation:   FeynRulesˋFR$FeynmanRules   / 17.17\text{ possible non-zero vertices have been found -$>$ starting the computation: }\;\text{FeynRules$\grave{ }$FR\$FeynmanRules}\;\text{ / }17.

17 vertices obtained.17\text{ vertices obtained.}

((B1B2B3)gsfa1,a2,a3ημ1,μ2  p1μ3+gsfa1,a2,a3ημ1,μ2  p2μ3+gsfa1,a2,a3ημ1,μ3  p1μ2gsfa1,a2,a3ημ1,μ3  p3μ2gsfa1,a2,a3ημ2,μ3  p2μ1+gsfa1,a2,a3ημ2,μ3  p3μ1(B1B2G3)gsfa1,a2,a3ημ1,μ3  p2μ2GaugeXi(G)gsfa1,a2,a3ημ2,μ3  p1μ1GaugeXi(G)gsfa1,a2,a3ημ1,μ2  p1μ3+gsfa1,a2,a3ημ1,μ2  p2μ3+gsfa1,a2,a3ημ1,μ3  p1μ2gsfa1,a2,a3ημ1,μ3  p3μ2gsfa1,a2,a3ημ2,μ3  p2μ1+gsfa1,a2,a3ημ2,μ3  p3μ1(  ghG1  ghG2B3)  gsfa3,a1,a2  p1μ3gsfa3,a1,a2  p2μ3(B1B2B3B4)i  gs2ημ1,μ4ημ2,μ3fa1,a3,Gluon$1fa2,a4,Gluon$1+i  gs2ημ1,μ4ημ2,μ3fa1,a2,Gluon$1fa3,a4,Gluon$1+i  gs2ημ1,μ3ημ2,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ3ημ2,μ4fa1,a2,Gluon$1fa3,a4,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a3,Gluon$1fa2,a4,Gluon$1(  ghG1  ghG2B3B4)i  gs2ημ3,μ4fa3,a2,Gluon$1fa4,a1,Gluon$1+i  gs2ημ3,μ4fa3,a1,Gluon$1fa4,a2,Gluon$1(B1G2G3)gsfa1,a2,a3ημ1,μ2  p3μ3GaugeXi(G)gsfa1,a2,a3ημ1,μ3  p2μ2GaugeXi(G)gsfa1,a2,a3ημ1,μ2  p1μ3+gsfa1,a2,a3ημ1,μ2  p2μ3+gsfa1,a2,a3ημ1,μ3  p1μ2gsfa1,a2,a3ημ1,μ3  p3μ2gsfa1,a2,a3ημ2,μ3  p2μ1+gsfa1,a2,a3ημ2,μ3  p3μ1(B1B2B3G4)i  gs2ημ1,μ4ημ2,μ3fa1,a3,Gluon$1fa2,a4,Gluon$1+i  gs2ημ1,μ4ημ2,μ3fa1,a2,Gluon$1fa3,a4,Gluon$1+i  gs2ημ1,μ3ημ2,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ3ημ2,μ4fa1,a2,Gluon$1fa3,a4,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a3,Gluon$1fa2,a4,Gluon$1(  ghG1  ghG2G3)  gsfa3,a1,a2  p1μ3(  ghG1  ghG2B3G4)i  gs2ημ3,μ4fa3,a1,Gluon$1fa4,a2,Gluon$1(B1B2G3G4)i  gs2ημ1,μ4ημ2,μ3fa1,a4,Gluon$1fa2,a3,Gluon$1GaugeXi(G)i  gs2ημ1,μ3ημ2,μ4fa1,a3,Gluon$1fa2,a4,Gluon$1GaugeXi(G)+i  gs2ημ1,μ4ημ2,μ3fa1,a3,Gluon$1fa2,a4,Gluon$1+i  gs2ημ1,μ4ημ2,μ3fa1,a2,Gluon$1fa3,a4,Gluon$1+i  gs2ημ1,μ3ημ2,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ3ημ2,μ4fa1,a2,Gluon$1fa3,a4,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a3,Gluon$1fa2,a4,Gluon$1(G1G2G3)gsfa1,a2,a3ημ1,μ2  p1μ3+gsfa1,a2,a3ημ1,μ2  p2μ3+gsfa1,a2,a3ημ1,μ3  p1μ2gsfa1,a2,a3ημ1,μ3  p3μ2gsfa1,a2,a3ημ2,μ3  p2μ1+gsfa1,a2,a3ημ2,μ3  p3μ1(B1G2G3G4)i  gs2ημ1,μ4ημ2,μ3fa1,a3,Gluon$1fa2,a4,Gluon$1+i  gs2ημ1,μ4ημ2,μ3fa1,a2,Gluon$1fa3,a4,Gluon$1+i  gs2ημ1,μ3ημ2,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ3ημ2,μ4fa1,a2,Gluon$1fa3,a4,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a3,Gluon$1fa2,a4,Gluon$1(G1G2G3G4)i  gs2ημ1,μ4ημ2,μ3fa1,a3,Gluon$1fa2,a4,Gluon$1+i  gs2ημ1,μ4ημ2,μ3fa1,a2,Gluon$1fa3,a4,Gluon$1+i  gs2ημ1,μ3ημ2,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ3ημ2,μ4fa1,a2,Gluon$1fa3,a4,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a4,Gluon$1fa2,a3,Gluon$1i  gs2ημ1,μ2ημ3,μ4fa1,a3,Gluon$1fa2,a4,Gluon$1(dq1  dq2B3)i  gsδf1,f2Tm1,m2a3γs1,s2μ3(uq1  uq2B3)i  gsδf1,f2Tm1,m2a3γs1,s2μ3(dq1  dq2G3)i  gsδf1,f2Tm1,m2a3γs1,s2μ3(uq1  uq2G3)i  gsδf1,f2Tm1,m2a3γs1,s2μ3)\left( \begin{array}{cc} \left( \begin{array}{cc} B & 1 \\ B & 2 \\ B & 3 \\ \end{array} \right) & -\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_1^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_2^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_1^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_3^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_2^{\mu _1}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_3^{\mu _1} \\ \left( \begin{array}{cc} B & 1 \\ B & 2 \\ G & 3 \\ \end{array} \right) & \frac{\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_2^{\mu _2}}{\text{GaugeXi}(G)}-\frac{\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_1^{\mu _1}}{\text{GaugeXi}(G)}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_1^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_2^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_1^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_3^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_2^{\mu _1}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_3^{\mu _1} \\ \left( \begin{array}{cc} \;\text{ghG}^{\dagger } & 1 \\ \;\text{ghG} & 2 \\ B & 3 \\ \end{array} \right) & \;\text{gs} f_{\text{a}_3,\text{a}_1,\text{a}_2} \;\text{p}_1^{\mu _3}-\text{gs} f_{\text{a}_3,\text{a}_1,\text{a}_2} \;\text{p}_2^{\mu _3} \\ \left( \begin{array}{cc} B & 1 \\ B & 2 \\ B & 3 \\ B & 4 \\ \end{array} \right) & i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}} \\ \left( \begin{array}{cc} \;\text{ghG}^{\dagger } & 1 \\ \;\text{ghG} & 2 \\ B & 3 \\ B & 4 \\ \end{array} \right) & i \;\text{gs}^2 \eta _{\mu _3,\mu _4} f_{\text{a}_3,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_4,\text{a}_1,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _3,\mu _4} f_{\text{a}_3,\text{a}_1,\text{Gluon\$1}} f_{\text{a}_4,\text{a}_2,\text{Gluon\$1}} \\ \left( \begin{array}{cc} B & 1 \\ G & 2 \\ G & 3 \\ \end{array} \right) & \frac{\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_3^{\mu _3}}{\text{GaugeXi}(G)}-\frac{\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_2^{\mu _2}}{\text{GaugeXi}(G)}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_1^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_2^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_1^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_3^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_2^{\mu _1}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_3^{\mu _1} \\ \left( \begin{array}{cc} B & 1 \\ B & 2 \\ B & 3 \\ G & 4 \\ \end{array} \right) & i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}} \\ \left( \begin{array}{cc} \;\text{ghG}^{\dagger } & 1 \\ \;\text{ghG} & 2 \\ G & 3 \\ \end{array} \right) & \;\text{gs} f_{\text{a}_3,\text{a}_1,\text{a}_2} \;\text{p}_1^{\mu _3} \\ \left( \begin{array}{cc} \;\text{ghG}^{\dagger } & 1 \\ \;\text{ghG} & 2 \\ B & 3 \\ G & 4 \\ \end{array} \right) & i \;\text{gs}^2 \eta _{\mu _3,\mu _4} f_{\text{a}_3,\text{a}_1,\text{Gluon\$1}} f_{\text{a}_4,\text{a}_2,\text{Gluon\$1}} \\ \left( \begin{array}{cc} B & 1 \\ B & 2 \\ G & 3 \\ G & 4 \\ \end{array} \right) & -\frac{i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}}{\text{GaugeXi}(G)}-\frac{i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}}}{\text{GaugeXi}(G)}+i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}} \\ \left( \begin{array}{cc} G & 1 \\ G & 2 \\ G & 3 \\ \end{array} \right) & -\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_1^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _2} \;\text{p}_2^{\mu _3}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_1^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _1,\mu _3} \;\text{p}_3^{\mu _2}-\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_2^{\mu _1}+\text{gs} f_{\text{a}_1,\text{a}_2,\text{a}_3} \eta _{\mu _2,\mu _3} \;\text{p}_3^{\mu _1} \\ \left( \begin{array}{cc} B & 1 \\ G & 2 \\ G & 3 \\ G & 4 \\ \end{array} \right) & i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}} \\ \left( \begin{array}{cc} G & 1 \\ G & 2 \\ G & 3 \\ G & 4 \\ \end{array} \right) & i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _4} \eta _{\mu _2,\mu _3} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}+i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _3} \eta _{\mu _2,\mu _4} f_{\text{a}_1,\text{a}_2,\text{Gluon\$1}} f_{\text{a}_3,\text{a}_4,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_4,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_3,\text{Gluon\$1}}-i \;\text{gs}^2 \eta _{\mu _1,\mu _2} \eta _{\mu _3,\mu _4} f_{\text{a}_1,\text{a}_3,\text{Gluon\$1}} f_{\text{a}_2,\text{a}_4,\text{Gluon\$1}} \\ \left( \begin{array}{cc} \overset{-}{\text{dq}} & 1 \\ \;\text{dq} & 2 \\ B & 3 \\ \end{array} \right) & -i \;\text{gs} \delta _{\text{f}_1,\text{f}_2} T_{\text{m}_1,\text{m}_2}^{\text{a}_3} \gamma _{\text{s}_1,\text{s}_2}{}^{\mu _3} \\ \left( \begin{array}{cc} \overset{-}{\text{uq}} & 1 \\ \;\text{uq} & 2 \\ B & 3 \\ \end{array} \right) & -i \;\text{gs} \delta _{\text{f}_1,\text{f}_2} T_{\text{m}_1,\text{m}_2}^{\text{a}_3} \gamma _{\text{s}_1,\text{s}_2}{}^{\mu _3} \\ \left( \begin{array}{cc} \overset{-}{\text{dq}} & 1 \\ \;\text{dq} & 2 \\ G & 3 \\ \end{array} \right) & -i \;\text{gs} \delta _{\text{f}_1,\text{f}_2} T_{\text{m}_1,\text{m}_2}^{\text{a}_3} \gamma _{\text{s}_1,\text{s}_2}{}^{\mu _3} \\ \left( \begin{array}{cc} \overset{-}{\text{uq}} & 1 \\ \;\text{uq} & 2 \\ G & 3 \\ \end{array} \right) & -i \;\text{gs} \delta _{\text{f}_1,\text{f}_2} T_{\text{m}_1,\text{m}_2}^{\text{a}_3} \gamma _{\text{s}_1,\text{s}_2}{}^{\mu _3} \\ \end{array} \right)

Create FeynArts model

SetDirectory[FileNameJoin[{$UserBaseDirectory, "Applications", "FeynCalc", "FeynArts", "Models"}]];
WriteFeynArtsOutput[LQCD, Output -> "QCDBGF", CouplingRename -> False,SelectParticles -> {
     {ghG, ghGbar, B}, {ghG, ghGbar, B, B}, {B, G, G}, 
     {ghG, ghGbar, G}, {ghG, ghGbar, B, G}, {B, B, G, G}, 
     {G, G, G}, {B, G, G, G}, {G, G, G, G}, {uqbar, uq, G}, {dqbar, dq, G}, 
     {uqbar, uq, B}, {dqbar, dq, B}}];

 - - - FeynRules interface to FeynArts - - -\text{ - - - FeynRules interface to FeynArts - - -}

 C. Degrande C. Duhr, 2013\text{ C. Degrande C. Duhr, 2013}

 Counterterms: B. Fuks, 2012\text{ Counterterms: B. Fuks, 2012}

Calculating Feynman rules for   L1\text{Calculating Feynman rules for }\;\text{L1}

Starting Feynman rules calculation for L1.\text{Starting Feynman rules calculation for L1.}

Expanding the Lagrangian...\text{Expanding the Lagrangian...}

Selecting specified field content. Warning! Only mass eigenstates should be selected!\text{Selecting specified field content. Warning! Only mass eigenstates should be selected!}

Neglecting all terms with more than 4 particles.\text{Neglecting all terms with more than }4\text{ particles.}

Neglecting all terms with less than 3 particles.\text{Neglecting all terms with less than }3\text{ particles.}

Collecting the different structures that enter the vertex.\text{Collecting the different structures that enter the vertex.}

13 possible non-zero vertices have been found -> starting the computation:   FeynRulesˋFR$FeynmanRules   / 13.13\text{ possible non-zero vertices have been found -$>$ starting the computation: }\;\text{FeynRules$\grave{ }$FR\$FeynmanRules}\;\text{ / }13.

13 vertices obtained.13\text{ vertices obtained.}

mytimecheck,after LGC\text{mytimecheck,after LGC}

Writing FeynArts model file into directory   QCDBGF\text{Writing FeynArts model file into directory }\;\text{QCDBGF}

Writing FeynArts generic file on   QCDBGF.gen.\text{Writing FeynArts generic file on }\;\text{QCDBGF.gen}.