Load
FeynCalc and the necessary add-ons or other packages
description = "Z -> F Fbar, EW, total decay rate, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
MakeBoxes[l1, TraditionalForm] := "\!\(\*SubscriptBox[\(l\), \(1\)]\)";
MakeBoxes[l2, TraditionalForm] := "\!\(\*SubscriptBox[\(l\), \(2\)]\)";
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
diagsLeptonsMassless = InsertFields[CreateTopologies[0, 1 -> 2],
{V[2]} -> {F[1, {l}], -F[1, {l}]}, InsertionLevel -> {Classes}];
Paint[diagsLeptonsMassless, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

diagsLeptonsMassive = InsertFields[CreateTopologies[0, 1 -> 2],
{V[2]} -> {F[2, {l}], -F[2, {l}]}, InsertionLevel -> {Classes}];
Paint[diagsLeptonsMassive, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

diagsUpQuarks = InsertFields[CreateTopologies[0, 1 -> 2],
{V[2]} -> {F[3, {l}], -F[3, {l}]}, InsertionLevel -> {Classes}];
Paint[diagsUpQuarks, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

diagsDownQuarks = InsertFields[CreateTopologies[0, 1 -> 2],
{V[2]} -> {F[4, {l}], -F[4, {l}]}, InsertionLevel -> {Classes}];
Paint[diagsDownQuarks, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitudes
ampLeptonsMassless[0] = FCFAConvert[CreateFeynAmp[diagsLeptonsMassless], IncomingMomenta -> {p},
OutgoingMomenta -> {l1, l2}, List -> False, ChangeDimension -> 4,
DropSumOver -> True, SMP -> True, Contract -> True,
FinalSubstitutions -> {MLE[l] -> SMP["m_l"], SMP["e"] -> Sqrt[8/Sqrt[2]*
SMP["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}]
−(cos(θW))(sin(θW))42GFmZ2(cos(θW))2(sin(θW))2(φ(l1)).(γˉ⋅εˉ(p)).γˉ7.(φ(−l2))
ampLeptonsMassive[0] = FCFAConvert[CreateFeynAmp[diagsLeptonsMassive], IncomingMomenta -> {p},
OutgoingMomenta -> {p1, p2}, List -> False, ChangeDimension -> 4,
DropSumOver -> True, SMP -> True, Contract -> True,
FinalSubstitutions -> {MLE[l] -> SMP["m_l"], SMP["e"] -> Sqrt[8/Sqrt[2]*
SMP["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}]
i(φ(p1,ml)).(cos(θW)2i42(sin(θW))(γˉ⋅εˉ(p)).γˉ6GFmZ2(cos(θW))2(sin(θW))2+(cos(θW))(sin(θW))2i42((sin(θW))2−21)(γˉ⋅εˉ(p)).γˉ7GFmZ2(cos(θW))2(sin(θW))2).(φ(−p2,ml))
ampUpQuarks[0] = FCFAConvert[CreateFeynAmp[diagsUpQuarks], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2}, List -> False, ChangeDimension -> 4,
DropSumOver -> True, SMP -> True, Contract -> True,
FinalSubstitutions -> {MQU[l] -> SMP["m_q"], SMP["e"] -> Sqrt[8/Sqrt[2]*
SMP["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}]
i(φ(k1,mq)).((cos(θW))(sin(θW))2i42δCol2Col3(21−32(sin(θW))2)(γˉ⋅εˉ(p)).γˉ7GFmZ2(cos(θW))2(sin(θW))2−3(cos(θW))4i42δCol2Col3(sin(θW))(γˉ⋅εˉ(p)).γˉ6GFmZ2(cos(θW))2(sin(θW))2).(φ(−k2,mq))
ampDownQuarks[0] = FCFAConvert[CreateFeynAmp[diagsDownQuarks], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2}, List -> False, ChangeDimension -> 4,
DropSumOver -> True, SMP -> True, Contract -> True,
FinalSubstitutions -> {MQD[l] -> SMP["m_q"], SMP["e"] -> Sqrt[8/Sqrt[2]*
SMP["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}]
i(φ(k1,mq)).((cos(θW))(sin(θW))2i42δCol2Col3(31(sin(θW))2−21)(γˉ⋅εˉ(p)).γˉ7GFmZ2(cos(θW))2(sin(θW))2+3(cos(θW))2i42δCol2Col3(sin(θW))(γˉ⋅εˉ(p)).γˉ6GFmZ2(cos(θW))2(sin(θW))2).(φ(−k2,mq))
Fix the kinematics
FCClearScalarProducts[]
SP[p] = SMP["m_Z"]^2;
SP[k1] = SMP["m_q"]^2;
SP[k2] = SMP["m_q"]^2;
SP[p1] = SMP["m_l"]^2;
SP[p2] = SMP["m_l"]^2;
SP[l1] = 0;
SP[l2] = 0;
SP[k1, k2] = Simplify[(SP[p] - SP[k1] - SP[k2])/2];
SP[p, k1] = Simplify[ExpandScalarProduct[SP[k1 + k2, k1]]];
SP[p, k2] = Simplify[ExpandScalarProduct[SP[k1 + k2, k2]]];
SP[p1, p2] = Simplify[(SP[p] - SP[p1] - SP[p2])/2];
SP[p, p1] = Simplify[ExpandScalarProduct[SP[p1 + p2, p1]]];
SP[p, p2] = Simplify[ExpandScalarProduct[SP[p1 + p2, p2]]];
SP[l1, l2] = Simplify[(SP[p] - SP[l1] - SP[l2])/2];
SP[p, l1] = Simplify[ExpandScalarProduct[SP[l1 + l2, l1]]];
SP[p, l2] = Simplify[ExpandScalarProduct[SP[l1 + l2, l2]]];
Square the amplitudes
We average over the polarizations of the W-boson, hence the
additional factor 1/3
ampSquaredLeptonsMassless[0] =
(ampLeptonsMassless[0] (ComplexConjugate[ampLeptonsMassless[0]])) //
FermionSpinSum // DiracSimplify //
DoPolarizationSums[#, p, ExtraFactor -> 1/3] & // Simplify
322GFmZ4
ampSquaredLeptonsMassive[0] =
(ampLeptonsMassive[0] (ComplexConjugate[ampLeptonsMassive[0]])) //
FermionSpinSum // DiracSimplify //
DoPolarizationSums[#, p, ExtraFactor -> 1/3] & // Simplify
322GFmZ2(ml2(16(sin(θW))4−8(sin(θW))2−1)+mZ2(8(sin(θW))4−4(sin(θW))2+1))
ampSquaredUpQuarks[0] =
(ampUpQuarks[0] (ComplexConjugate[ampUpQuarks[0]])) //
FermionSpinSum // DiracSimplify // SUNSimplify //
DoPolarizationSums[#, p, ExtraFactor -> 1/3] & // Simplify
2722CAGFmZ2(mq2(64(sin(θW))4−48(sin(θW))2−9)+mZ2(32(sin(θW))4−24(sin(θW))2+9))
ampSquaredDownQuarks[0] =
(ampDownQuarks[0] (ComplexConjugate[ampDownQuarks[0]])) //
FermionSpinSum // DiracSimplify // SUNSimplify //
DoPolarizationSums[#, p, ExtraFactor -> 1/3] & // Simplify
2722CAGFmZ2(mq2(16(sin(θW))4−24(sin(θW))2−9)+mZ2(8(sin(θW))4−12(sin(θW))2+9))
Total decay rates
phaseSpacePrefactor[m1_, m2_, M_] := 1/(16 Pi M) Sqrt[1 - (m1 + m2)^2/M^2]*
Sqrt[1 - (m1 - m2)^2/M^2];
totalDecayRateLeptonsMassless = phaseSpacePrefactor[0, 0, SMP["m_Z"]]*
ampSquaredLeptonsMassless[0] // Simplify
122πGFmZ3
totalDecayRateLeptonsMassive = phaseSpacePrefactor[SMP["m_l"], SMP["m_l"], SMP["m_Z"]]*
ampSquaredLeptonsMassive[0] // Simplify
12πGFmZ21−mZ22ml2(ml2(16(sin(θW))4−8(sin(θW))2−1)+mZ2(8(sin(θW))4−4(sin(θW))2+1))
totalDecayRateUpQuarks = phaseSpacePrefactor[SMP["m_q"], SMP["m_q"], SMP["m_Z"]]*
ampSquaredUpQuarks[0] // Simplify
108πCAGFmZ21−mZ22mq2(mq2(64(sin(θW))4−48(sin(θW))2−9)+mZ2(32(sin(θW))4−24(sin(θW))2+9))
totalDecayRateDownQuarks = phaseSpacePrefactor[SMP["m_q"], SMP["m_q"], SMP["m_Z"]]*
ampSquaredDownQuarks[0] // Simplify
108πCAGFmZ21−mZ22mq2(mq2(16(sin(θW))4−24(sin(θW))2−9)+mZ2(8(sin(θW))4−12(sin(θW))2+9))
Check the final results
tmp = (SMP["G_F"]*Sqrt[1 - (4*mf^2)/SMP["m_Z"]^2]*SMP["m_Z"]^3*
(cv^2 (1 + 2 mf^2/SMP["m_Z"]^2) + ca^2 (1 - 4 mf^2/SMP["m_Z"]^2)))/(6*Pi Sqrt[2]);
knownResults = {
tmp /. {cv | ca -> 1/2, mf -> 0},
tmp /. {cv -> -1/2 + 2 SMP["sin_W"]^2, ca -> -1/2, mf -> SMP["m_l"]},
CA tmp /. {cv -> 1/2 - 4/3 SMP["sin_W"]^2, ca -> 1/2, mf -> SMP["m_q"]},
CA tmp /. {cv -> -1/2 + 2/3 SMP["sin_W"]^2, ca -> -1/2, mf -> SMP["m_q"]}
};
FCCompareResults[{
totalDecayRateLeptonsMassless,
totalDecayRateLeptonsMassive,
totalDecayRateUpQuarks,
totalDecayRateDownQuarks},
knownResults,
Text -> {"\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:CORRECT.
\tCPU Time used: 18.707 s.