= "Z -> F Fbar, EW, total decay rate, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
MakeBoxes[l1, TraditionalForm] := "\!\(\*SubscriptBox[\(l\), \(1\)]\)";
MakeBoxes[l2, TraditionalForm] := "\!\(\*SubscriptBox[\(l\), \(2\)]\)";
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 1 -> 2],
diagsLeptonsMassless {V[2]} -> {F[1, {l}], -F[1, {l}]}, InsertionLevel -> {Classes}];
[diagsLeptonsMassless, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
= InsertFields[CreateTopologies[0, 1 -> 2],
diagsLeptonsMassive {V[2]} -> {F[2, {l}], -F[2, {l}]}, InsertionLevel -> {Classes}];
[diagsLeptonsMassive, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
= InsertFields[CreateTopologies[0, 1 -> 2],
diagsUpQuarks {V[2]} -> {F[3, {l}], -F[3, {l}]}, InsertionLevel -> {Classes}];
[diagsUpQuarks, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
= InsertFields[CreateTopologies[0, 1 -> 2],
diagsDownQuarks {V[2]} -> {F[4, {l}], -F[4, {l}]}, InsertionLevel -> {Classes}];
[diagsDownQuarks, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diagsLeptonsMassless], IncomingMomenta -> {p},
ampLeptonsMassless-> {l1, l2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> True, SMP -> True, Contract -> True,
DropSumOver -> {MLE[l] -> SMP["m_l"], SMP["e"] -> Sqrt[8/Sqrt[2]*
FinalSubstitutions ["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}] SMP
-\frac{\sqrt[4]{2} \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2} \left(\varphi (\overline{l_1})\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^7.\left(\varphi (-\overline{l_2})\right)}{\left(\left.\cos (\theta _W\right)\right) \left(\left.\sin (\theta _W\right)\right)}
[0] = FCFAConvert[CreateFeynAmp[diagsLeptonsMassive], IncomingMomenta -> {p},
ampLeptonsMassive-> {p1, p2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> True, SMP -> True, Contract -> True,
DropSumOver -> {MLE[l] -> SMP["m_l"], SMP["e"] -> Sqrt[8/Sqrt[2]*
FinalSubstitutions ["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}] SMP
i \left(\varphi (\overline{p_1},m_l)\right).\left(\frac{2 i \sqrt[4]{2} \left(\left.\sin (\theta _W\right)\right) \left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^6 \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2}}{\left.\cos (\theta _W\right)}+\frac{2 i \sqrt[4]{2} \left(\left(\left.\sin (\theta _W\right)\right){}^2-\frac{1}{2}\right) \left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^7 \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2}}{\left(\left.\cos (\theta _W\right)\right) \left(\left.\sin (\theta _W\right)\right)}\right).\left(\varphi (-\overline{p_2},m_l)\right)
[0] = FCFAConvert[CreateFeynAmp[diagsUpQuarks], IncomingMomenta -> {p},
ampUpQuarks-> {k1, k2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> True, SMP -> True, Contract -> True,
DropSumOver -> {MQU[l] -> SMP["m_q"], SMP["e"] -> Sqrt[8/Sqrt[2]*
FinalSubstitutions ["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}] SMP
i \left(\varphi (\overline{k_1},m_q)\right).\left(\frac{2 i \sqrt[4]{2} \delta _{\text{Col2}\;\text{Col3}} \left(\frac{1}{2}-\frac{2}{3} \left(\left.\sin (\theta _W\right)\right){}^2\right) \left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^7 \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2}}{\left(\left.\cos (\theta _W\right)\right) \left(\left.\sin (\theta _W\right)\right)}-\frac{4 i \sqrt[4]{2} \delta _{\text{Col2}\;\text{Col3}} \left(\left.\sin (\theta _W\right)\right) \left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^6 \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2}}{3 \left(\left.\cos (\theta _W\right)\right)}\right).\left(\varphi (-\overline{k_2},m_q)\right)
[0] = FCFAConvert[CreateFeynAmp[diagsDownQuarks], IncomingMomenta -> {p},
ampDownQuarks-> {k1, k2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> True, SMP -> True, Contract -> True,
DropSumOver -> {MQD[l] -> SMP["m_q"], SMP["e"] -> Sqrt[8/Sqrt[2]*
FinalSubstitutions ["G_F"] SMP["m_Z"]^2 SMP["cos_W"]^2 SMP["sin_W"]^2]}] SMP
i \left(\varphi (\overline{k_1},m_q)\right).\left(\frac{2 i \sqrt[4]{2} \delta _{\text{Col2}\;\text{Col3}} \left(\frac{1}{3} \left(\left.\sin (\theta _W\right)\right){}^2-\frac{1}{2}\right) \left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^7 \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2}}{\left(\left.\cos (\theta _W\right)\right) \left(\left.\sin (\theta _W\right)\right)}+\frac{2 i \sqrt[4]{2} \delta _{\text{Col2}\;\text{Col3}} \left(\left.\sin (\theta _W\right)\right) \left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^6 \sqrt{G_F m_Z^2 \left(\left.\cos (\theta _W\right)\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^2}}{3 \left(\left.\cos (\theta _W\right)\right)}\right).\left(\varphi (-\overline{k_2},m_q)\right)
[]
FCClearScalarProducts[p] = SMP["m_Z"]^2;
SP[k1] = SMP["m_q"]^2;
SP[k2] = SMP["m_q"]^2;
SP
[p1] = SMP["m_l"]^2;
SP[p2] = SMP["m_l"]^2;
SP
[l1] = 0;
SP[l2] = 0;
SP
[k1, k2] = Simplify[(SP[p] - SP[k1] - SP[k2])/2];
SP[p, k1] = Simplify[ExpandScalarProduct[SP[k1 + k2, k1]]];
SP[p, k2] = Simplify[ExpandScalarProduct[SP[k1 + k2, k2]]];
SP
[p1, p2] = Simplify[(SP[p] - SP[p1] - SP[p2])/2];
SP[p, p1] = Simplify[ExpandScalarProduct[SP[p1 + p2, p1]]];
SP[p, p2] = Simplify[ExpandScalarProduct[SP[p1 + p2, p2]]];
SP
[l1, l2] = Simplify[(SP[p] - SP[l1] - SP[l2])/2];
SP[p, l1] = Simplify[ExpandScalarProduct[SP[l1 + l2, l1]]];
SP[p, l2] = Simplify[ExpandScalarProduct[SP[l1 + l2, l2]]]; SP
We average over the polarizations of the W-boson, hence the additional factor 1/3
[0] =
ampSquaredLeptonsMassless[0] (ComplexConjugate[ampLeptonsMassless[0]])) //
(ampLeptonsMassless// DiracSimplify //
FermionSpinSum [#, p, ExtraFactor -> 1/3] & // Simplify DoPolarizationSums
\frac{2}{3} \sqrt{2} G_F m_Z^4
[0] =
ampSquaredLeptonsMassive[0] (ComplexConjugate[ampLeptonsMassive[0]])) //
(ampLeptonsMassive// DiracSimplify //
FermionSpinSum [#, p, ExtraFactor -> 1/3] & // Simplify DoPolarizationSums
\frac{2}{3} \sqrt{2} G_F m_Z^2 \left(m_l^2 \left(16 \left(\left.\sin (\theta _W\right)\right){}^4-8 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)+m_Z^2 \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-4 \left(\left.\sin (\theta _W\right)\right){}^2+1\right)\right)
[0] =
ampSquaredUpQuarks[0] (ComplexConjugate[ampUpQuarks[0]])) //
(ampUpQuarks// DiracSimplify // SUNSimplify //
FermionSpinSum [#, p, ExtraFactor -> 1/3] & // Simplify DoPolarizationSums
\frac{2}{27} \sqrt{2} C_A G_F m_Z^2 \left(m_q^2 \left(64 \left(\left.\sin (\theta _W\right)\right){}^4-48 \left(\left.\sin (\theta _W\right)\right){}^2-9\right)+m_Z^2 \left(32 \left(\left.\sin (\theta _W\right)\right){}^4-24 \left(\left.\sin (\theta _W\right)\right){}^2+9\right)\right)
[0] =
ampSquaredDownQuarks[0] (ComplexConjugate[ampDownQuarks[0]])) //
(ampDownQuarks// DiracSimplify // SUNSimplify //
FermionSpinSum [#, p, ExtraFactor -> 1/3] & // Simplify DoPolarizationSums
\frac{2}{27} \sqrt{2} C_A G_F m_Z^2 \left(m_q^2 \left(16 \left(\left.\sin (\theta _W\right)\right){}^4-24 \left(\left.\sin (\theta _W\right)\right){}^2-9\right)+m_Z^2 \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta _W\right)\right){}^2+9\right)\right)
[m1_, m2_, M_] := 1/(16 Pi M) Sqrt[1 - (m1 + m2)^2/M^2]*
phaseSpacePrefactorSqrt[1 - (m1 - m2)^2/M^2];
= phaseSpacePrefactor[0, 0, SMP["m_Z"]]*
totalDecayRateLeptonsMassless [0] // Simplify ampSquaredLeptonsMassless
\frac{G_F m_Z^3}{12 \sqrt{2} \pi }
= phaseSpacePrefactor[SMP["m_l"], SMP["m_l"], SMP["m_Z"]]*
totalDecayRateLeptonsMassive [0] // Simplify ampSquaredLeptonsMassive
\frac{G_F m_Z \sqrt{\frac{1}{2}-\frac{2 m_l^2}{m_Z^2}} \left(m_l^2 \left(16 \left(\left.\sin (\theta _W\right)\right){}^4-8 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)+m_Z^2 \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-4 \left(\left.\sin (\theta _W\right)\right){}^2+1\right)\right)}{12 \pi }
= phaseSpacePrefactor[SMP["m_q"], SMP["m_q"], SMP["m_Z"]]*
totalDecayRateUpQuarks [0] // Simplify ampSquaredUpQuarks
\frac{C_A G_F m_Z \sqrt{\frac{1}{2}-\frac{2 m_q^2}{m_Z^2}} \left(m_q^2 \left(64 \left(\left.\sin (\theta _W\right)\right){}^4-48 \left(\left.\sin (\theta _W\right)\right){}^2-9\right)+m_Z^2 \left(32 \left(\left.\sin (\theta _W\right)\right){}^4-24 \left(\left.\sin (\theta _W\right)\right){}^2+9\right)\right)}{108 \pi }
= phaseSpacePrefactor[SMP["m_q"], SMP["m_q"], SMP["m_Z"]]*
totalDecayRateDownQuarks [0] // Simplify ampSquaredDownQuarks
\frac{C_A G_F m_Z \sqrt{\frac{1}{2}-\frac{2 m_q^2}{m_Z^2}} \left(m_q^2 \left(16 \left(\left.\sin (\theta _W\right)\right){}^4-24 \left(\left.\sin (\theta _W\right)\right){}^2-9\right)+m_Z^2 \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta _W\right)\right){}^2+9\right)\right)}{108 \pi }
= (SMP["G_F"]*Sqrt[1 - (4*mf^2)/SMP["m_Z"]^2]*SMP["m_Z"]^3*
tmp ^2 (1 + 2 mf^2/SMP["m_Z"]^2) + ca^2 (1 - 4 mf^2/SMP["m_Z"]^2)))/(6*Pi Sqrt[2]);
(cv= {
knownResults /. {cv | ca -> 1/2, mf -> 0},
tmp /. {cv -> -1/2 + 2 SMP["sin_W"]^2, ca -> -1/2, mf -> SMP["m_l"]},
tmp /. {cv -> 1/2 - 4/3 SMP["sin_W"]^2, ca -> 1/2, mf -> SMP["m_q"]},
CA tmp /. {cv -> -1/2 + 2/3 SMP["sin_W"]^2, ca -> -1/2, mf -> SMP["m_q"]}
CA tmp };
[{
FCCompareResults,
totalDecayRateLeptonsMassless,
totalDecayRateLeptonsMassive,
totalDecayRateUpQuarks},
totalDecayRateDownQuarks,
knownResultsText -> {"\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }18.707\text{ s.}