EW manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "W -> Qi Qjbar, EW, total decay rate, tree";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

\text{If you use FeynArts in your research, please cite}

\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Enable CKM mixing

$CKM = True;

Nicer typesetting

MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 1 -> 2], 
        {V[3]} -> {-F[3, {1}], F[4, {1}]}, InsertionLevel -> {Particles}]; 
    
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {512, 256}];

16av6pyrw8x3c

Obtain the amplitude

amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p}, 
    OutgoingMomenta -> {k1, k2}, ChangeDimension -> 4, List -> False, SMP -> True, 
    TransversePolarizationVectors -> {p}, 
    Contract -> True, DropSumOver -> True, FinalSubstitutions -> 
    {SMP["e"] -> Sqrt[8/Sqrt[2] SMP["G_F"] SMP["m_W"]^2 SMP["sin_W"]^2]}]

\frac{2^{3/4} V_{\text{ud}}^* \delta _{\text{Col2}\;\text{Col3}} \sqrt{G_F m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2} \left(\varphi (\overline{k_2},m_d)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^7.\left(\varphi (-\overline{k_1},m_u)\right)}{\left.\sin (\theta _W\right)}

Fix the kinematics

FCClearScalarProducts[]
SP[p] = SMP["m_W"]^2;
SP[k1] = SMP["m_u"]^2;
SP[k2] = SMP["m_d"]^2;
SP[k1, k2] = (SMP["m_W"]^2 - SMP["m_u"]^2 - SMP["m_d"]^2)/2;
SP[p, k1] = Simplify[ExpandScalarProduct[SP[k1 + k2, k1]]];
SP[p, k2] = Simplify[ExpandScalarProduct[SP[k1 + k2, k2]]];

Square the amplitude

We average over the polarizations of the W-boson, hence the additional factor 1/3.

ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) // SUNSimplify // 
        FermionSpinSum // DiracSimplify // 
    DoPolarizationSums[#, p, ExtraFactor -> 1/3] & // Simplify

-\frac{2}{3} \sqrt{2} C_A G_F V_{\text{ud}}^* V_{\text{ud}} \left(m_d^2 \left(m_W^2-2 m_u^2\right)+m_d^4+m_u^2 m_W^2+m_u^4-2 m_W^4\right)

Total decay rate

phaseSpacePrefactor[m1_, m2_, M_] := 1/(16 Pi M) Sqrt[1 - (m1 + m2)^2/M^2]*
    Sqrt[1 - (m1 - m2)^2/M^2];
totalDecayRate = phaseSpacePrefactor[SMP["m_u"], SMP["m_d"], SMP["m_W"]]*
        ampSquared[0] // Simplify // 
    ReplaceAll[#, Sqrt[x_] Sqrt[y_] :> Sqrt[ExpandAll[x y]]] & // Factor2

-\frac{C_A G_F V_{\text{ud}}^* V_{\text{ud}} \sqrt{\frac{\left(m_d-m_u-m_W\right) \left(m_d+m_u-m_W\right) \left(m_d-m_u+m_W\right) \left(m_d+m_u+m_W\right)}{m_W^4}} \left(-2 m_d^2 m_u^2+m_d^2 m_W^2+m_d^4+m_u^2 m_W^2+m_u^4-2 m_W^4\right)}{12 \sqrt{2} \pi m_W}

Check the final results

knownResults = {
    SMP["m_W"]^3 (CA*SMP["G_F"]*Sqrt[((SMP["m_d"] - SMP["m_u"] - SMP["m_W"])*(SMP["m_d"] + SMP["m_u"] - SMP["m_W"])*
            (SMP["m_d"] - SMP["m_u"] + SMP["m_W"])*(SMP["m_d"] + SMP["m_u"] + SMP["m_W"]))/SMP["m_W"]^4]*
        (1 - (SMP["m_u"]^2 + SMP["m_d"]^2)/(2 SMP["m_W"]^2) - (SMP["m_u"]^2 - SMP["m_d"]^2)^2/(2 SMP["m_W"]^4))*SMP["V_ud", -I]*SMP["V_ud", I])/
      (6*Sqrt[2]*Pi) 
   };
FCCompareResults[{totalDecayRate}, 
  knownResults, 
  Text -> {"\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:", 
    "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}]
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."]; 
  
  
 

\text{$\backslash $tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:} \;\text{CORRECT.}

\text{True}

\text{$\backslash $tCPU Time used: }16.799\text{ s.}