= "W -> El Anel, EW, total decay rate, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
Nicer typesetting
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
= InsertFields[CreateTopologies[0, 1 -> 2],
diags {V[3]} -> {F[2, {1}], -F[1, {1}]}, InsertionLevel -> {Particles}];
[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p},
amp-> {k1, k2}, ChangeDimension -> 4, List -> False, SMP -> True,
OutgoingMomenta -> {p},
TransversePolarizationVectors -> True, DropSumOver -> True, FinalSubstitutions ->
Contract {SMP["e"] -> Sqrt[8/Sqrt[2] SMP["G_F"] SMP["m_W"]^2 SMP["sin_W"]^2]}]
-\frac{2^{3/4} \sqrt{G_F m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2} \left(\varphi (\overline{k_1},m_e)\right).\left(\bar{\gamma }\cdot \bar{\varepsilon }(p)\right).\bar{\gamma }^7.\left(\varphi (-\overline{k_2})\right)}{\left.\sin (\theta _W\right)}
[]
FCClearScalarProducts[p] = SMP["m_W"]^2;
SP[k1] = SMP["m_e"]^2;
SP[k2] = 0;
SP[k1, k2] = (SMP["m_W"]^2 - SMP["m_e"]^2)/2;
SP[p, k1] = (SMP["m_W"]^2 + SMP["m_e"]^2)/2;
SP[p, k2] = (SMP["m_W"]^2 - SMP["m_e"]^2)/2; SP
We average over the polarizations of the W-boson, hence the additional factor 1/3
[0] = (amp[0] (ComplexConjugate[amp[0]])) // SUNSimplify //
ampSquared// DiracSimplify //
FermionSpinSum [#, p, ExtraFactor -> 1/3] & // Simplify DoPolarizationSums
-\frac{2}{3} \sqrt{2} G_F \left(m_e^2 m_W^2+m_e^4-2 m_W^4\right)
[m1_, m2_, M_] := 1/(16 Pi M) Sqrt[1 - (m1 + m2)^2/M^2]*
phaseSpacePrefactorSqrt[1 - (m1 - m2)^2/M^2];
= phaseSpacePrefactor[SMP["m_e"], 0, SMP["m_W"]]*
totalDecayRate [0] // Simplify ampSquared
\frac{G_F \left(m_e^2-m_W^2\right){}^2 \left(m_e^2+2 m_W^2\right)}{12 \sqrt{2} \pi m_W^3}
= {
knownResults ["G_F"] (SMP["m_e"] - SMP["m_W"])^2 (SMP["m_e"] +
(SMP["m_W"])^2 (SMP["m_e"]^2 + 2*SMP["m_W"]^2))/
SMP12*Sqrt[2]*Pi*SMP["m_W"]^3)
(};
[{totalDecayRate},
FCCompareResults,
knownResultsText -> {"\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }22.804\text{ s.}