Load
FeynCalc and the necessary add-ons or other packages
description = "Qutbar Qdt -> Nel Anel, EW, matrix element squared, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
Enable CKM mixing
To avoid dealing with Goldstone bosons we do the computation in the
unitary gauge
InitializeModel[{SM, UnitarySM}, GenericModel -> {Lorentz, UnitaryLorentz}];
diags = InsertFields[CreateTopologies[0, 2 -> 2],
{-F[3, {1}], F[4, {1}]} -> {F[2, {1}], -F[1, {1}]},
InsertionLevel -> {Particles}, Model -> {SM, UnitarySM},
GenericModel -> {Lorentz, UnitaryLorentz}];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags, GaugeRules -> {FAGaugeXi[W | Z] -> Infinity}],
IncomingMomenta -> {p2, p1}, OutgoingMomenta -> {k1, k2}, ChangeDimension -> 4, List -> False,
SMP -> True, Contract -> True, DropSumOver -> True]
2(sin(θW))2((k1+k2)2−mW2)e2VudδCol1Col2(φ(k1,me)).γˉLor1.γˉ7.(φ(−k2))(φ(−p2,mu)).γˉLor1.γˉ7.(φ(p1,md))+2mW2(sin(θW))2((k1+k2)2−mW2)e2VudδCol1Col2(φ(k1,me)).(γˉ⋅(k1+k2)).γˉ7.(φ(−k2))(φ(−p2,mu)).(γˉ⋅(−k1−k2)).γˉ7.(φ(p1,md))
Fix the kinematics
FCClearScalarProducts[]
SetMandelstam[s, t, u, p1, p2, -k1, -k2 , 0, 0, 0, 0];
Square the amplitude
We average over the spins and the colors of the quarks, hence the
additional factor 1/3^2 1/2^2.
ampSquared[0] = 1/3^2*(amp[0] (ComplexConjugate[amp[0]])) //
FermionSpinSum[#, ExtraFactor -> 1/2^2] & // DiracSimplify //
FeynAmpDenominatorExplicit // SUNSimplify[#, SUNNToCACF -> False] & //
ReplaceAll[#, SUNN -> 3] &
12(s−mW2)2(sin(θW))4e4u2Vud∗Vud
Check the final results
knownResults = {
(u^2*SMP["e"]^4*SMP["V_ud", -I]*SMP["V_ud", I])/(12*(s - SMP["m_W"]^2)^2*SMP["sin_W"]^4)
};
FCCompareResults[{ampSquared[0]},
knownResults,
Text -> {"\tCompare to CompHEP:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to CompHEP:CORRECT.
\tCPU Time used: 23.02 s.