EW manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "Qutbar Qdt -> Nel Anel, EW, matrix element squared, tree";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

\text{If you use FeynArts in your research, please cite}

\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Nicer typesetting

MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";

Enable CKM mixing

$CKM = True;

To avoid dealing with Goldstone bosons we do the computation in the unitary gauge

InitializeModel[{SM, UnitarySM}, GenericModel -> {Lorentz, UnitaryLorentz}];
diags = InsertFields[CreateTopologies[0, 2 -> 2], 
        {-F[3, {1}], F[4, {1}]} -> {F[2, {1}], -F[1, {1}]}, 
        InsertionLevel -> {Particles}, Model -> {SM, UnitarySM}, 
        GenericModel -> {Lorentz, UnitaryLorentz}]; 
 
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {512, 256}];

1ossokn35lkrj

Obtain the amplitude

amp[0] = FCFAConvert[CreateFeynAmp[diags, GaugeRules -> {FAGaugeXi[W | Z] -> Infinity}], 
   IncomingMomenta -> {p2, p1}, OutgoingMomenta -> {k1, k2}, ChangeDimension -> 4, List -> False, 
   SMP -> True, Contract -> True, DropSumOver -> True]

\frac{\text{e}^2 V_{\text{ud}} \delta _{\text{Col1}\;\text{Col2}} \left(\varphi (\overline{k_1},m_e)\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma }^7.\left(\varphi (-\overline{k_2})\right) \left(\varphi (-\overline{p_2},m_u)\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma }^7.\left(\varphi (\overline{p_1},m_d)\right)}{2 \left(\left.\sin (\theta _W\right)\right){}^2 \left((\overline{k_1}+\overline{k_2}){}^2-m_W^2\right)}+\frac{\text{e}^2 V_{\text{ud}} \delta _{\text{Col1}\;\text{Col2}} \left(\varphi (\overline{k_1},m_e)\right).\left(\bar{\gamma }\cdot \left(\overline{k_1}+\overline{k_2}\right)\right).\bar{\gamma }^7.\left(\varphi (-\overline{k_2})\right) \left(\varphi (-\overline{p_2},m_u)\right).\left(\bar{\gamma }\cdot \left(-\overline{k_1}-\overline{k_2}\right)\right).\bar{\gamma }^7.\left(\varphi (\overline{p_1},m_d)\right)}{2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2 \left((\overline{k_1}+\overline{k_2}){}^2-m_W^2\right)}

Fix the kinematics

FCClearScalarProducts[]
SetMandelstam[s, t, u, p1, p2, -k1, -k2 , 0, 0, 0, 0];

Square the amplitude

We average over the spins and the colors of the quarks, hence the additional factor 1/3^2 1/2^2.

ampSquared[0] = 1/3^2*(amp[0] (ComplexConjugate[amp[0]])) // 
        FermionSpinSum[#, ExtraFactor -> 1/2^2] & // DiracSimplify // 
        FeynAmpDenominatorExplicit // SUNSimplify[#, SUNNToCACF -> False] & // 
    ReplaceAll[#, SUNN -> 3] &

\frac{\text{e}^4 u^2 V_{\text{ud}}^* V_{\text{ud}}}{12 \left(s-m_W^2\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^4}

Check the final results

knownResults = {
    (u^2*SMP["e"]^4*SMP["V_ud", -I]*SMP["V_ud", I])/(12*(s - SMP["m_W"]^2)^2*SMP["sin_W"]^4) 
   };
FCCompareResults[{ampSquared[0]}, 
   knownResults, 
   Text -> {"\tCompare to CompHEP:", 
     "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];

\text{$\backslash $tCompare to CompHEP:} \;\text{CORRECT.}

\text{$\backslash $tCPU Time used: }23.02\text{ s.}