Load
FeynCalc and the necessary add-ons or other packages
description = "Qt -> Qb W, EW, total decay rate, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
Enable CKM mixing
diags = InsertFields[CreateTopologies[0, 1 -> 2],
{F[3, {3}]} -> {F[4, {3}], -V[3]}, InsertionLevel -> {Particles}];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitude
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p},
OutgoingMomenta -> {k1, k2}, ChangeDimension -> 4, List -> False, SMP -> True,
Contract -> True, DropSumOver -> True, TransversePolarizationVectors -> {k2},
FinalSubstitutions -> {SMP["e"] -> Sqrt[8/Sqrt[2] SMP["G_F"] SMP["m_W"]^2 SMP["sin_W"]^2]}]
sin(θW)23/4Vtb∗δCol1Col2GFmW2(sin(θW))2(φ(k1,mb)).(γˉ⋅εˉ∗(k2)).γˉ7.(φ(p,mt))
Fix the kinematics
FCClearScalarProducts[]
SP[p] = SMP["m_t"]^2;
SP[k1] = SMP["m_b"]^2;
SP[k2] = SMP["m_W"]^2;
SP[k1, k2] = Simplify[(SP[p] - SP[k1] - SP[k2])/2];
SP[p, k1] = Simplify[ExpandScalarProduct[SP[k1 + k2, k1]]];
SP[p, k2] = Simplify[ExpandScalarProduct[SP[k1 + k2, k2]]];
Square the amplitude
We average over the polarizations of the top quark, hence the
additional factor 1/2
ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) // SUNSimplify //
FermionSpinSum[#, ExtraFactor -> 1/2] & // DiracSimplify //
DoPolarizationSums[#, k2] & // Simplify
2CAGFVtb∗Vtb(mb2(mW2−2mt2)+mb4+mt2mW2+mt4−2mW4)
Total decay rate
phaseSpacePrefactor[m1_, m2_, M_] := 1/(16 Pi M) Sqrt[1 - (m1 + m2)^2/M^2]*
Sqrt[1 - (m1 - m2)^2/M^2];
totalDecayRate = phaseSpacePrefactor[SMP["m_b"], SMP["m_W"], SMP["m_t"]]*
ampSquared[0] // Simplify // ReplaceAll[#, Sqrt[x_] Sqrt[y_] :>
Sqrt[ExpandAll[x y]]] &
82πmtCAGFVtb∗Vtb−mt42mb2mW2+mt4mb4−mt22mb2+mt4mW4−mt22mW2+1(mb2(mW2−2mt2)+mb4+mt2mW2+mt4−2mW4)
Check the final results
knownResults = {
SMP["m_t"]^3 (CA*SMP["G_F"]*Sqrt[((SMP["m_b"] - SMP["m_t"] -
SMP["m_W"])*(SMP["m_b"] + SMP["m_t"] - SMP["m_W"])*(SMP["m_b"] -
SMP["m_t"] + SMP["m_W"])*(SMP["m_b"] + SMP["m_t"] + SMP["m_W"]))/
SMP["m_t"]^4]*((1 - SMP["m_b"]^2/SMP["m_t"]^2)^2 + SMP["m_W"]^2/
SMP["m_t"]^2 (1 + SMP["m_b"]^2/SMP["m_t"]^2) - 2 SMP["m_W"]^4/SMP["m_t"]^4
)*SMP["V_tb", -I]*SMP["V_tb", I])/(8*Sqrt[2]*Pi)
};
FCCompareResults[{totalDecayRate},
knownResults,
Text -> {"\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.2:CORRECT.
\tCPU Time used: 16.965 s.