Load
FeynCalc and the necessary add-ons or other packages
description = "Mu -> El Anel Nmu, EW, total decay rate, tree" ;
If [ $FrontEnd === Null ,
$FeynCalcStartupMessages = False ;
Print [ description] ;
] ;
If [ $Notebooks === False ,
$FeynCalcStartupMessages = False
] ;
$LoadAddOns = { "FeynArts" } ;
<< FeynCalc`
$FAVerbose = 0 ;
FCCheckVersion[ 9 , 3 , 1 ] ;
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation ‾ , check out the wiki ‾ or visit the forum . ‾ \text{FeynCalc }\;\text{10.0.0 (dev
version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the
}\underline{\text{online} \;\text{documentation}}\;\text{, check out the
}\underline{\text{wiki}}\;\text{ or visit the
}\underline{\text{forum}.} FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation , check out the wiki or visit the forum .
Please check our FAQ ‾ for answers to some common FeynCalc questions and have a look at the supplied examples . ‾ \text{Please check our
}\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc
questions and have a look at the supplied
}\underline{\text{examples}.} Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples .
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software. \text{If you use FeynCalc in your
research, please evaluate FeynCalcHowToCite[] to learn how to cite this
software.} If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package! \text{Please keep in mind that the proper
academic attribution of our work is crucial to ensure the future
development of this package!} Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual ‾ or visit www . feynarts . de . ‾ \text{FeynArts }\;\text{3.11 (3 Aug 2020)
patched for use with FeynCalc, for documentation see the
}\underline{\text{manual}}\;\text{ or visit
}\underline{\text{www}.\text{feynarts}.\text{de}.} FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www . feynarts . de .
If you use FeynArts in your research, please cite \text{If you use FeynArts in your
research, please cite} If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260 \text{ $\bullet $ T. Hahn, Comput. Phys.
Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260} ∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes [ q1, TraditionalForm ] := " \!\(\* SubscriptBox[ \( q \) , \( 1 \) ] \) " ;
MakeBoxes [ q2, TraditionalForm ] := " \!\(\* SubscriptBox[ \( q \) , \( 2 \) ] \) " ;
To avoid dealing with Goldstone bosons we do the computation in the
unitary gauge
InitializeModel[{ SM, UnitarySM}, GenericModel -> { Lorentz, UnitaryLorentz}] ;
diags = InsertFields[ CreateTopologies[ 0 , 1 -> 3 ],
{ F [ 2 , { 2 }]} -> { F [ 2 , { 1 }], - F [ 1 , { 1 }], F [ 1 , { 2 }]}, InsertionLevel -> { Classes},
Model -> { SM, UnitarySM}, GenericModel -> { Lorentz, UnitaryLorentz}] ;
Paint[ diags, ColumnsXRows -> { 2 , 1 }, Numbering -> Simple,
SheetHeader -> None , ImageSize -> { 512 , 256 }] ;
Obtain the amplitude
amp[ 0 ] = FCFAConvert[ CreateFeynAmp[ diags, GaugeRules -> { FAGaugeXi[ W | Z ] -> Infinity }],
IncomingMomenta -> { p }, OutgoingMomenta -> { k , q1, q2}, ChangeDimension -> 4 , List -> False ,
SMP -> True , Contract -> True , DropSumOver -> True ,
FinalSubstitutions -> { SMP[ "e" ] -> Sqrt [ 8 / Sqrt [ 2 ] * SMP[ "G_F" ] *
SMP[ "m_W" ] ^ 2 SMP[ "sin_W" ] ^ 2 ]}]
− 2 2 G F m W 2 ( φ ( k ‾ , m e ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( − q 1 ‾ ) ) ( φ ( q 2 ‾ ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( p ‾ , m μ ) ) ( k ‾ + q 1 ‾ ) 2 − m W 2 − 2 2 G F ( φ ( k ‾ , m e ) ) . ( γ ˉ ⋅ ( k ‾ + q 1 ‾ ) ) . γ ˉ 7 . ( φ ( − q 1 ‾ ) ) ( φ ( q 2 ‾ ) ) . ( γ ˉ ⋅ ( − k ‾ − q 1 ‾ ) ) . γ ˉ 7 . ( φ ( p ‾ , m μ ) ) ( k ‾ + q 1 ‾ ) 2 − m W 2 -\frac{2 \sqrt{2} G_F m_W^2 \left(\varphi
(\overline{k},m_e)\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma
}^7.\left(\varphi (-\overline{q_1})\right) \left(\varphi
(\overline{q_2})\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma
}^7.\left(\varphi (\overline{p},m_{\mu
})\right)}{(\overline{k}+\overline{q_1}){}^2-m_W^2}-\frac{2 \sqrt{2} G_F
\left(\varphi (\overline{k},m_e)\right).\left(\bar{\gamma }\cdot
\left(\overline{k}+\overline{q_1}\right)\right).\bar{\gamma
}^7.\left(\varphi (-\overline{q_1})\right) \left(\varphi
(\overline{q_2})\right).\left(\bar{\gamma }\cdot
\left(-\overline{k}-\overline{q_1}\right)\right).\bar{\gamma
}^7.\left(\varphi (\overline{p},m_{\mu
})\right)}{(\overline{k}+\overline{q_1}){}^2-m_W^2} − ( k + q 1 ) 2 − m W 2 2 2 G F m W 2 ( φ ( k , m e ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( − q 1 ) ) ( φ ( q 2 ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( p , m μ ) ) − ( k + q 1 ) 2 − m W 2 2 2 G F ( φ ( k , m e ) ) . ( γ ˉ ⋅ ( k + q 1 ) ) . γ ˉ 7 . ( φ ( − q 1 ) ) ( φ ( q 2 ) ) . ( γ ˉ ⋅ ( − k − q 1 ) ) . γ ˉ 7 . ( φ ( p , m μ ) )
Fix the kinematics
FCClearScalarProducts[]
SP[ k , k ] = SMP[ "m_e" ] ^ 2 ;
SP[ q1, q1] = 0 ;
SP[ q2, q2] = 0 ;
Square the amplitude
We average over the polarizations of the muon, hence the additional
factor 1/2
ampSquared[ 0 ] = (amp[ 0 ] (ComplexConjugate[ amp[ 0 ]] )) //
FermionSpinSum[ #, ExtraFactor -> 1 / 2 ] & // DiracSimplify // Factor
16 G F 2 1 ( k ‾ + q 1 ‾ ) 2 − m W 2 2 ( − 2 m e 2 ( p ‾ ⋅ q 2 ‾ ) ( k ‾ ⋅ q 1 ‾ ) 2 − 2 m e 2 m W 2 ( k ‾ ⋅ q 2 ‾ ) ( p ‾ ⋅ q 1 ‾ ) + 2 m e 2 m W 2 ( k ‾ ⋅ q 1 ‾ ) ( p ‾ ⋅ q 2 ‾ ) − 2 m e 2 m W 2 ( k ‾ ⋅ p ‾ ) ( q 1 ‾ ⋅ q 2 ‾ ) + m e 4 ( − ( k ‾ ⋅ q 1 ‾ ) ) ( p ‾ ⋅ q 2 ‾ ) + 2 m e 2 ( k ‾ ⋅ p ‾ ) ( k ‾ ⋅ q 1 ‾ ) ( k ‾ ⋅ q 2 ‾ ) + 2 m e 2 ( k ‾ ⋅ q 1 ‾ ) ( k ‾ ⋅ q 2 ‾ ) ( p ‾ ⋅ q 1 ‾ ) + 2 m e 2 ( k ‾ ⋅ p ‾ ) ( k ‾ ⋅ q 1 ‾ ) ( q 1 ‾ ⋅ q 2 ‾ ) + 2 m e 2 ( k ‾ ⋅ q 1 ‾ ) ( p ‾ ⋅ q 1 ‾ ) ( q 1 ‾ ⋅ q 2 ‾ ) − 4 m e 2 m W 2 ( p ‾ ⋅ q 1 ‾ ) ( q 1 ‾ ⋅ q 2 ‾ ) + 4 m W 4 ( k ‾ ⋅ q 2 ‾ ) ( p ‾ ⋅ q 1 ‾ ) ) 16 G_F^2
\frac{1}{(\overline{k}+\overline{q_1}){}^2-m_W^2}{}^2 \left(-2 m_e^2
\left(\overline{p}\cdot \overline{q_2}\right) (\overline{k}\cdot
\overline{q_1}){}^2-2 m_e^2 m_W^2 \left(\overline{k}\cdot
\overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right)+2
m_e^2 m_W^2 \left(\overline{k}\cdot \overline{q_1}\right)
\left(\overline{p}\cdot \overline{q_2}\right)-2 m_e^2 m_W^2
\left(\overline{k}\cdot \overline{p}\right) \left(\overline{q_1}\cdot
\overline{q_2}\right)+m_e^4 \left(-\left(\overline{k}\cdot
\overline{q_1}\right)\right) \left(\overline{p}\cdot
\overline{q_2}\right)+2 m_e^2 \left(\overline{k}\cdot
\overline{p}\right) \left(\overline{k}\cdot \overline{q_1}\right)
\left(\overline{k}\cdot \overline{q_2}\right)+2 m_e^2
\left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{k}\cdot
\overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right)+2
m_e^2 \left(\overline{k}\cdot \overline{p}\right)
\left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{q_1}\cdot
\overline{q_2}\right)+2 m_e^2 \left(\overline{k}\cdot
\overline{q_1}\right) \left(\overline{p}\cdot \overline{q_1}\right)
\left(\overline{q_1}\cdot \overline{q_2}\right)-4 m_e^2 m_W^2
\left(\overline{p}\cdot \overline{q_1}\right) \left(\overline{q_1}\cdot
\overline{q_2}\right)+4 m_W^4 \left(\overline{k}\cdot
\overline{q_2}\right) \left(\overline{p}\cdot
\overline{q_1}\right)\right) 16 G F 2 ( k + q 1 ) 2 − m W 2 1 2 ( − 2 m e 2 ( p ⋅ q 2 ) ( k ⋅ q 1 ) 2 − 2 m e 2 m W 2 ( k ⋅ q 2 ) ( p ⋅ q 1 ) + 2 m e 2 m W 2 ( k ⋅ q 1 ) ( p ⋅ q 2 ) − 2 m e 2 m W 2 ( k ⋅ p ) ( q 1 ⋅ q 2 ) + m e 4 ( − ( k ⋅ q 1 ) ) ( p ⋅ q 2 ) + 2 m e 2 ( k ⋅ p ) ( k ⋅ q 1 ) ( k ⋅ q 2 ) + 2 m e 2 ( k ⋅ q 1 ) ( k ⋅ q 2 ) ( p ⋅ q 1 ) + 2 m e 2 ( k ⋅ p ) ( k ⋅ q 1 ) ( q 1 ⋅ q 2 ) + 2 m e 2 ( k ⋅ q 1 ) ( p ⋅ q 1 ) ( q 1 ⋅ q 2 ) − 4 m e 2 m W 2 ( p ⋅ q 1 ) ( q 1 ⋅ q 2 ) + 4 m W 4 ( k ⋅ q 2 ) ( p ⋅ q 1 ) )
In the following we neglect the momentum in the W-propagator as
compared to the W-mass. This is a very good approximation at low
energies, as then (k+q1)^2 <= m_mu^2 << m_W^2.
ampSquared[ 1 ] = ampSquared[ 0 ] // FCE // ReplaceAll [ #, { k + q1 -> 0 }] & //
FeynAmpDenominatorExplicit // Series [ #, { SMP[ "m_W" ], Infinity , 0 }] & // Normal
64 G F 2 ( k ‾ ⋅ q 2 ‾ ) ( p ‾ ⋅ q 1 ‾ ) 64 G_F^2 \left(\overline{k}\cdot
\overline{q_2}\right) \left(\overline{p}\cdot
\overline{q_1}\right) 64 G F 2 ( k ⋅ q 2 ) ( p ⋅ q 1 )
Total decay rate
To compute the total decay rate, we follow the calculation done in
Okun, Leptons and Quarks, Chapter 3. The differential decay rate is
given by
d Γ = 1/(2M) d^3 k / ((2π)^3 2 k^0) d^3 q1 / ((2π)^3 2 q1^0) d^3 q2 /
((2π)^3 2 q2^0) (2π)^4 δ^4 (q-q1-q2) sqAmpMuonDecayTree2 with q =
p-k
prefac = (2 SMP[ "m_mu" ] (2 Pi )^ 5 8 )^- 1 ;
diffDecayRate = prefac d3q1/ En[ q1] d3q2/ En[ q2] d3k/ En[ k ] delta4[ q - q1 - q2] *
ampSquared[ 1 ]
d3k d3q1 d3q2 G F 2 ( k ‾ ⋅ q 2 ‾ ) ( p ‾ ⋅ q 1 ‾ ) delta4 ( q − q 1 − q 2 ) 8 π 5 En ( k ) En ( q 1 ) En ( q 2 ) m μ \frac{\text{d3k} \;\text{d3q1}
\;\text{d3q2} G_F^2 \left(\overline{k}\cdot \overline{q_2}\right)
\left(\overline{p}\cdot \overline{q_1}\right)
\;\text{delta4}\left(q-q_1-q_2\right)}{8 \pi ^5 \;\text{En}(k)
\;\text{En}\left(q_1\right) \;\text{En}\left(q_2\right) m_{\mu
}} 8 π 5 En ( k ) En ( q 1 ) En ( q 2 ) m μ d3k d3q1 d3q2 G F 2 ( k ⋅ q 2 ) ( p ⋅ q 1 ) delta4 ( q − q 1 − q 2 )
First we reduce the tensor integrals in q1 to q2 to scalar ones by
using tensor decomposition
q1q2[ mu_ , nu_ ] := ReplaceAll [ Tdec[{{ q1x, mu}, { q2x, nu}}, { q }, List -> False , Dimension -> 4 ],
{ SP[ q1x, q2x] -> SP[ q , q ] / 2 , SP[ q , q1x | q2x] -> SP[ q , q ] / 2 }] ;
1 12 ( q ‾ 2 g ˉ mu nu + 2 q ‾ mu q ‾ nu ) \frac{1}{12} \left(\overline{q}^2
\bar{g}^{\text{mu}\;\text{nu}}+2 \overline{q}^{\text{mu}}
\overline{q}^{\text{nu}}\right) 12 1 ( q 2 g ˉ mu nu + 2 q mu q nu )
diffDecayRate1 = Uncontract[ diffDecayRate, q1, q2, Pair -> All ]
d3k d3q1 d3q2 G F 2 delta4 ( q − q 1 − q 2 ) k ‾ $AL ( $77 ) p ‾ $AL ( $78 ) q 1 ‾ $AL ( $78 ) q 2 ‾ $AL ( $77 ) 8 π 5 En ( k ) En ( q 1 ) En ( q 2 ) m μ \frac{\text{d3k} \;\text{d3q1}
\;\text{d3q2} G_F^2 \;\text{delta4}\left(q-q_1-q_2\right)
\overline{k}^{\text{\$AL}(\text{\$77})}
\overline{p}^{\text{\$AL}(\text{\$78})}
\overline{q_1}{}^{\text{\$AL}(\text{\$78})}
\overline{q_2}{}^{\text{\$AL}(\text{\$77})}}{8 \pi ^5 \;\text{En}(k)
\;\text{En}\left(q_1\right) \;\text{En}\left(q_2\right) m_{\mu
}} 8 π 5 En ( k ) En ( q 1 ) En ( q 2 ) m μ d3k d3q1 d3q2 G F 2 delta4 ( q − q 1 − q 2 ) k $AL ( $77 ) p $AL ( $78 ) q 1 $AL ( $78 ) q 2 $AL ( $77 )
diffDecayRate2 = ((diffDecayRate1 // FCE) /. FV[ q1, mu_ ] FV[ q2, nu_ ] :> q1q2[ mu, nu] ) //
Contract // FCE
d3k d3q1 d3q2 G F 2 delta4 ( q − q 1 − q 2 ) ( 1 6 ( k ‾ ⋅ q ‾ ) ( p ‾ ⋅ q ‾ ) + 1 12 q ‾ 2 ( k ‾ ⋅ p ‾ ) ) 8 π 5 En ( k ) En ( q 1 ) En ( q 2 ) m μ \frac{\text{d3k} \;\text{d3q1}
\;\text{d3q2} G_F^2 \;\text{delta4}\left(q-q_1-q_2\right)
\left(\frac{1}{6} \left(\overline{k}\cdot \overline{q}\right)
\left(\overline{p}\cdot \overline{q}\right)+\frac{1}{12} \overline{q}^2
\left(\overline{k}\cdot \overline{p}\right)\right)}{8 \pi ^5
\;\text{En}(k) \;\text{En}\left(q_1\right) \;\text{En}\left(q_2\right)
m_{\mu }} 8 π 5 En ( k ) En ( q 1 ) En ( q 2 ) m μ d3k d3q1 d3q2 G F 2 delta4 ( q − q 1 − q 2 ) ( 6 1 ( k ⋅ q ) ( p ⋅ q ) + 12 1 q 2 ( k ⋅ p ) )
Integrating over q1 and q2 (in the rest frame of the decaying muon)
we get rid of the Dirac delta and simplify the integral
diffDecayRate3 = diffDecayRate2 /. { d3q2 delta4[ q - q1 - q2] -> delta[ En[ q ] - 2 En[ q1]]} /. { En[ q2] -> En[ q1]} /.
{ d3q1 -> 4 Pi dq10 En[ q1] ^ 2 } /. { dq10 delta[ En[ q ] - 2 En[ q1]] -> 1 / 2 }
d3k G F 2 ( 1 6 ( k ‾ ⋅ q ‾ ) ( p ‾ ⋅ q ‾ ) + 1 12 q ‾ 2 ( k ‾ ⋅ p ‾ ) ) 4 π 4 En ( k ) m μ \frac{\text{d3k} G_F^2 \left(\frac{1}{6}
\left(\overline{k}\cdot \overline{q}\right) \left(\overline{p}\cdot
\overline{q}\right)+\frac{1}{12} \overline{q}^2 \left(\overline{k}\cdot
\overline{p}\right)\right)}{4 \pi ^4 \;\text{En}(k) m_{\mu }} 4 π 4 En ( k ) m μ d3k G F 2 ( 6 1 ( k ⋅ q ) ( p ⋅ q ) + 12 1 q 2 ( k ⋅ p ) )
Then we use the kinematics of the process, to simplify things even
further. Here we also use the fact that the mass of the electron is very
small as compared to its energy
diffDecayRate4 = (diffDecayRate3 / /. { SP[ q , p ] -> SMP[ "m_mu" ] ^ 2 - SMP[ "m_mu" ] En[ k ], SP[ k , q ] | SP[ p , k ] -> SMP[ "m_mu" ] En[ k ],
SP[ q , q ] -> SMP[ "m_mu" ] ^ 2 - 2 SMP[ "m_mu" ] En[ k ]} ) // Simplify
− d3k G F 2 m μ ( 4 En ( k ) − 3 m μ ) 48 π 4 -\frac{\text{d3k} G_F^2 m_{\mu } \left(4
\;\text{En}(k)-3 m_{\mu }\right)}{48 \pi ^4} − 48 π 4 d3k G F 2 m μ ( 4 En ( k ) − 3 m μ )
Next we trade d3k for dOmega d k^0 (k0) 2 and introduce Eps
that is defined as 2 k^0/ m_mu
diffDecayRate5 = (diffDecayRate4 /. d3k -> dk0 En[ k ] ^ 2 4 Pi /. En[ k ] -> Eps SMP[ "m_mu" ] / 2 /.
dk0 -> dEps SMP[ "m_mu" ] / 2 ) // Factor2
dEps ( 3 − 2 Eps ) Eps 2 G F 2 m μ 5 96 π 3 \frac{\text{dEps} (3-2 \;\text{Eps})
\;\text{Eps}^2 G_F^2 m_{\mu }^5}{96 \pi ^3} 96 π 3 dEps ( 3 − 2 Eps ) Eps 2 G F 2 m μ 5
Integrating over Eps we arrive to the final result
decayRateTotal = Integrate [ diffDecayRate5 /. dEps -> 1 , { Eps, 0 , 1 }]
G F 2 m μ 5 192 π 3 \frac{G_F^2 m_{\mu }^5}{192 \pi
^3} 192 π 3 G F 2 m μ 5
Check the final results
knownResults = {
(SMP[ "G_F" ] ^ 2 * SMP[ "m_mu" ] ^ 5 )/ (192 * Pi ^ 3 )
} ;
FCCompareResults[{ decayRateTotal},
knownResults,
Text -> { " \t Compare to Okun, Leptons and Quarks, Chapter 3.2:" ,
"CORRECT." , "WRONG!" }, Interrupt -> { Hold [ Quit [ 1 ]], Automatic }] ;
Print [ " \t CPU Time used: " , Round [ N [ TimeUsed [], 3 ], 0.001 ], " s." ] ;
\ tCompare to Okun, Leptons and Quarks, Chapter 3.2: CORRECT. \text{$\backslash $tCompare to Okun,
Leptons and Quarks, Chapter 3.2:} \;\text{CORRECT.} \tCompare to Okun, Leptons and Quarks, Chapter 3.2: CORRECT.
\ tCPU Time used: 17.333 s. \text{$\backslash $tCPU Time used:
}17.333\text{ s.} \tCPU Time used: 17.333 s.