EW manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "Mu -> El Anel Nmu, EW, total decay rate, tree";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

\text{If you use FeynArts in your research, please cite}

\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Nicer typesetting

MakeBoxes[q1, TraditionalForm] := "\!\(\*SubscriptBox[\(q\), \(1\)]\)";
MakeBoxes[q2, TraditionalForm] := "\!\(\*SubscriptBox[\(q\), \(2\)]\)";

To avoid dealing with Goldstone bosons we do the computation in the unitary gauge

InitializeModel[{SM, UnitarySM}, GenericModel -> {Lorentz, UnitaryLorentz}];
diags = InsertFields[CreateTopologies[0, 1 -> 3], 
        {F[2, {2}]} -> {F[2, {1}], -F[1, {1}], F[1, {2}]}, InsertionLevel -> {Classes}, 
            Model -> {SM, UnitarySM}, GenericModel -> {Lorentz, UnitaryLorentz}]; 
 
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {512, 256}];

16ieixv8knjj3

Obtain the amplitude

amp[0] = FCFAConvert[CreateFeynAmp[diags, GaugeRules -> {FAGaugeXi[W | Z] -> Infinity}], 
   IncomingMomenta -> {p}, OutgoingMomenta -> {k, q1, q2}, ChangeDimension -> 4, List -> False, 
   SMP -> True, Contract -> True, DropSumOver -> True,  
   FinalSubstitutions -> {SMP["e"] -> Sqrt[8/Sqrt[2]*SMP["G_F"]*
        SMP["m_W"]^2 SMP["sin_W"]^2]}]

-\frac{2 \sqrt{2} G_F m_W^2 \left(\varphi (\overline{k},m_e)\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma }^7.\left(\varphi (-\overline{q_1})\right) \left(\varphi (\overline{q_2})\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma }^7.\left(\varphi (\overline{p},m_{\mu })\right)}{(\overline{k}+\overline{q_1}){}^2-m_W^2}-\frac{2 \sqrt{2} G_F \left(\varphi (\overline{k},m_e)\right).\left(\bar{\gamma }\cdot \left(\overline{k}+\overline{q_1}\right)\right).\bar{\gamma }^7.\left(\varphi (-\overline{q_1})\right) \left(\varphi (\overline{q_2})\right).\left(\bar{\gamma }\cdot \left(-\overline{k}-\overline{q_1}\right)\right).\bar{\gamma }^7.\left(\varphi (\overline{p},m_{\mu })\right)}{(\overline{k}+\overline{q_1}){}^2-m_W^2}

Fix the kinematics

FCClearScalarProducts[]
SP[k, k] = SMP["m_e"]^2;
SP[q1, q1] = 0;
SP[q2, q2] = 0;

Square the amplitude

We average over the polarizations of the muon, hence the additional factor 1/2

ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) // 
        FermionSpinSum[#, ExtraFactor -> 1/2] & // DiracSimplify // Factor

16 G_F^2 \frac{1}{(\overline{k}+\overline{q_1}){}^2-m_W^2}{}^2 \left(-2 m_e^2 \left(\overline{p}\cdot \overline{q_2}\right) (\overline{k}\cdot \overline{q_1}){}^2-2 m_e^2 m_W^2 \left(\overline{k}\cdot \overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right)+2 m_e^2 m_W^2 \left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{p}\cdot \overline{q_2}\right)-2 m_e^2 m_W^2 \left(\overline{k}\cdot \overline{p}\right) \left(\overline{q_1}\cdot \overline{q_2}\right)+m_e^4 \left(-\left(\overline{k}\cdot \overline{q_1}\right)\right) \left(\overline{p}\cdot \overline{q_2}\right)+2 m_e^2 \left(\overline{k}\cdot \overline{p}\right) \left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{k}\cdot \overline{q_2}\right)+2 m_e^2 \left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{k}\cdot \overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right)+2 m_e^2 \left(\overline{k}\cdot \overline{p}\right) \left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{q_1}\cdot \overline{q_2}\right)+2 m_e^2 \left(\overline{k}\cdot \overline{q_1}\right) \left(\overline{p}\cdot \overline{q_1}\right) \left(\overline{q_1}\cdot \overline{q_2}\right)-4 m_e^2 m_W^2 \left(\overline{p}\cdot \overline{q_1}\right) \left(\overline{q_1}\cdot \overline{q_2}\right)+4 m_W^4 \left(\overline{k}\cdot \overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right)\right)

In the following we neglect the momentum in the W-propagator as compared to the W-mass. This is a very good approximation at low energies, as then (k+q1)^2 <= m_mu^2 << m_W^2.

ampSquared[1] = ampSquared[0] // FCE // ReplaceAll[#, {k + q1 -> 0}] & // 
        FeynAmpDenominatorExplicit // Series[#, {SMP["m_W"], Infinity, 0}] & // Normal

64 G_F^2 \left(\overline{k}\cdot \overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right)

Total decay rate

To compute the total decay rate, we follow the calculation done in Okun, Leptons and Quarks, Chapter 3. The differential decay rate is given by

d Γ = 1/(2M) d^3 k / ((2π)^3 2 k^0) d^3 q1 / ((2π)^3 2 q1^0) d^3 q2 / ((2π)^3 2 q2^0) (2π)^4 δ^4 (q-q1-q2) sqAmpMuonDecayTree2 with q = p-k

prefac = (2 SMP["m_mu"] (2 Pi)^5 8)^-1;
diffDecayRate = prefac d3q1/En[q1] d3q2/En[q2] d3k/En[k] delta4[q - q1 - q2]*
    ampSquared[1]

\frac{\text{d3k} \;\text{d3q1} \;\text{d3q2} G_F^2 \left(\overline{k}\cdot \overline{q_2}\right) \left(\overline{p}\cdot \overline{q_1}\right) \;\text{delta4}\left(q-q_1-q_2\right)}{8 \pi ^5 \;\text{En}(k) \;\text{En}\left(q_1\right) \;\text{En}\left(q_2\right) m_{\mu }}

First we reduce the tensor integrals in q1 to q2 to scalar ones by using tensor decomposition

q1q2[mu_, nu_] := ReplaceAll[Tdec[{{q1x, mu}, {q2x, nu}}, {q}, List -> False, Dimension -> 4], 
    {SP[q1x, q2x] -> SP[q, q]/2, SP[q, q1x | q2x] -> SP[q, q]/2}];
q1q2[mu, nu] // Factor2

\frac{1}{12} \left(\overline{q}^2 \bar{g}^{\text{mu}\;\text{nu}}+2 \overline{q}^{\text{mu}} \overline{q}^{\text{nu}}\right)

diffDecayRate1 = Uncontract[diffDecayRate, q1, q2, Pair -> All]

\frac{\text{d3k} \;\text{d3q1} \;\text{d3q2} G_F^2 \;\text{delta4}\left(q-q_1-q_2\right) \overline{k}^{\text{\$AL}(\text{\$77})} \overline{p}^{\text{\$AL}(\text{\$78})} \overline{q_1}{}^{\text{\$AL}(\text{\$78})} \overline{q_2}{}^{\text{\$AL}(\text{\$77})}}{8 \pi ^5 \;\text{En}(k) \;\text{En}\left(q_1\right) \;\text{En}\left(q_2\right) m_{\mu }}

diffDecayRate2 = ((diffDecayRate1 // FCE) /. FV[q1, mu_] FV[q2, nu_] :> q1q2[mu, nu]) // 
    Contract // FCE

\frac{\text{d3k} \;\text{d3q1} \;\text{d3q2} G_F^2 \;\text{delta4}\left(q-q_1-q_2\right) \left(\frac{1}{6} \left(\overline{k}\cdot \overline{q}\right) \left(\overline{p}\cdot \overline{q}\right)+\frac{1}{12} \overline{q}^2 \left(\overline{k}\cdot \overline{p}\right)\right)}{8 \pi ^5 \;\text{En}(k) \;\text{En}\left(q_1\right) \;\text{En}\left(q_2\right) m_{\mu }}

Integrating over q1 and q2 (in the rest frame of the decaying muon) we get rid of the Dirac delta and simplify the integral

diffDecayRate3 = diffDecayRate2 /. {d3q2 delta4[q - q1 - q2] -> delta[En[q] - 2 En[q1]]} /. {En[q2] -> En[q1]} /. 
    {d3q1 -> 4 Pi dq10 En[q1]^2} /. {dq10 delta[En[q] - 2 En[q1]] -> 1/2}

\frac{\text{d3k} G_F^2 \left(\frac{1}{6} \left(\overline{k}\cdot \overline{q}\right) \left(\overline{p}\cdot \overline{q}\right)+\frac{1}{12} \overline{q}^2 \left(\overline{k}\cdot \overline{p}\right)\right)}{4 \pi ^4 \;\text{En}(k) m_{\mu }}

Then we use the kinematics of the process, to simplify things even further. Here we also use the fact that the mass of the electron is very small as compared to its energy

diffDecayRate4 = (diffDecayRate3 //. {SP[q, p] -> SMP["m_mu"]^2 - SMP["m_mu"] En[k], SP[k, q] | SP[p, k] -> SMP["m_mu"] En[k], 
      SP[q, q] -> SMP["m_mu"]^2 - 2 SMP["m_mu"] En[k]}) // Simplify

-\frac{\text{d3k} G_F^2 m_{\mu } \left(4 \;\text{En}(k)-3 m_{\mu }\right)}{48 \pi ^4}

Next we trade d3k for dOmega d k^0 (k0)2 and introduce Eps that is defined as 2 k^0/ m_mu

diffDecayRate5 = (diffDecayRate4 /. d3k -> dk0 En[k]^2 4 Pi /. En[k] -> Eps SMP["m_mu"]/2 /. 
     dk0 -> dEps SMP["m_mu"]/2) // Factor2

\frac{\text{dEps} (3-2 \;\text{Eps}) \;\text{Eps}^2 G_F^2 m_{\mu }^5}{96 \pi ^3}

Integrating over Eps we arrive to the final result

decayRateTotal = Integrate[diffDecayRate5 /. dEps -> 1, {Eps, 0, 1}]

\frac{G_F^2 m_{\mu }^5}{192 \pi ^3}

Check the final results

knownResults = {
    (SMP["G_F"]^2*SMP["m_mu"]^5)/(192*Pi^3) 
   };
FCCompareResults[{decayRateTotal}, 
   knownResults, 
   Text -> {"\tCompare to Okun, Leptons and Quarks, Chapter 3.2:", 
     "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];

\text{$\backslash $tCompare to Okun, Leptons and Quarks, Chapter 3.2:} \;\text{CORRECT.}

\text{$\backslash $tCPU Time used: }17.333\text{ s.}