Load
FeynCalc and the necessary add-ons or other packages
description = "H -> Z Z, EW, total decay rate, tree";
If[ $FrontEnd === Null,
$FeynCalcStartupMessages = False;
Print[description];
];
If[ $Notebooks === False,
$FeynCalcStartupMessages = False
];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0;
FCCheckVersion[9, 3, 1];
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the onlinedocumentation, check out the wiki or visit the forum.
Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples.
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www.feynarts.de.
If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
diags = InsertFields[CreateTopologies[0, 1 -> 2], {S[1]} -> {V[2], V[2]},
InsertionLevel -> {Classes}];
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
SheetHeader -> None, ImageSize -> {512, 256}];

Obtain the amplitudes
amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {pH},
OutgoingMomenta -> {k1, k2}, List -> False, ChangeDimension -> 4,
DropSumOver -> True, SMP -> True, Contract -> True, UndoChiralSplittings -> True]
(cos(θW))2(sin(θW))emW(εˉ∗(k1)⋅εˉ∗(k2))
Fix the kinematics
FCClearScalarProducts[];
SP[k1, k1] = SMP["m_Z"]^2;
SP[k2, k2] = SMP["m_Z"]^2;
SP[pH, pH] = SMP["m_H"]^2;
SP[k1, k2] = (SMP["m_H"]^2 - 2 SMP["m_Z"]^2)/2;
Square the amplitudes
ampSquared[0] = 1/2 (amp[0] (ComplexConjugate[amp[0]])) //
FeynAmpDenominatorExplicit // DoPolarizationSums[#, k1] & //
DoPolarizationSums[#, k2] & // Simplify
8mZ4(cos(θW))4(sin(θW))2e2mW2(−4mH2mZ2+mH4+12mZ4)
Total decay rates
$Assumptions = {SMP["m_H"] > 0, SMP["m_Z"] > 0};
phaseSpacePrefactor[m_] := 1/(16 Pi SMP["m_H"]) Sqrt[1 - 4 m^2 / SMP["m_H"]^2];
totalDecayRate = phaseSpacePrefactor[SMP["m_Z"]] ampSquared[0] //
ReplaceRepeated[#, {SMP["e"]^2 -> 4 Pi SMP["alpha_fs"], 1/SMP["m_Z"]^4 ->
SMP["cos_W"]^4/SMP["m_W"]^4}] & // Simplify
32mH2mW2(sin(θW))2αmH2−4mZ2(−4mH2mZ2+mH4+12mZ4)
Rewrite the result in a nicer way
(totalDecayRate /. SMP["m_Z"]^2 -> h[SMP["m_Z"]^2/SMP["m_H"]^2] SMP["m_H"]^2 /.
SMP["m_Z"]^4 -> h[SMP["m_Z"]^4/SMP["m_H"]^4] SMP["m_H"]^4) // FullSimplify // ReplaceAll[#, h -> Identity] &
32mW2(sin(θW))2αmH31−mH24mZ2(mH412mZ4−mH24mZ2+1)
Check the final results
knownResults = {
(SMP["alpha_fs"]*SMP["m_H"]^3*Sqrt[1 - (4*SMP["m_Z"]^2)/SMP["m_H"]^2]*
(1 - (4*SMP["m_Z"]^2)/SMP["m_H"]^2 + (12*SMP["m_Z"]^4)/SMP["m_H"]^4))/
(32*SMP["m_W"]^2*SMP["sin_W"]^2)};
FCCompareResults[{totalDecayRate},
knownResults, Factoring -> Simplify,
Text -> {"\tCompare to Gunion, Haber, Kane and Dawson, Higgs Hunter Guide, Eq 2.10:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\tCompare to Gunion, Haber, Kane and Dawson, Higgs Hunter Guide, Eq 2.10:CORRECT.
\tCPU Time used: 20.691 s.