= "H -> W W, EW, total decay rate, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
= InsertFields[CreateTopologies[0, 1 -> 2], {S[1]} -> {-V[3], V[3]},
diags -> {Classes}];
InsertionLevel
[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {pH},
amp-> {k1, k2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> {k1, k2},
TransversePolarizationVectors -> True, SMP -> True, Contract -> True, UndoChiralSplittings -> True] DropSumOver
\frac{\text{e} m_W \left(\bar{\varepsilon }^*(\text{k1})\cdot \bar{\varepsilon }^*(\text{k2})\right)}{\left.\sin (\theta _W\right)}
[];
FCClearScalarProducts[k1, k1] = SMP["m_W"]^2;
SP[k2, k2] = SMP["m_W"]^2;
SP[pH, pH] = SMP["m_H"]^2;
SP[k1, k2] = (SMP["m_H"]^2 - 2 SMP["m_W"]^2)/2; SP
[0] = (amp[0] (ComplexConjugate[amp[0]])) //
ampSquared// DoPolarizationSums[#, k1] & //
FeynAmpDenominatorExplicit [#, k2] & // Simplify DoPolarizationSums
\frac{\text{e}^2 \left(-4 m_H^2 m_W^2+m_H^4+12 m_W^4\right)}{4 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
$Assumptions = {SMP["m_H"] > 0, SMP["m_W"] > 0};
[m_] := 1/(16 Pi SMP["m_H"]) Sqrt[1 - 4 m^2 / SMP["m_H"]^2]; phaseSpacePrefactor
= phaseSpacePrefactor[SMP["m_W"]] ampSquared[0] //
totalDecayRate ReplaceAll[#, SMP["e"]^2 -> 4 Pi SMP["alpha_fs"]] & // Simplify
\frac{\alpha \sqrt{m_H^2-4 m_W^2} \left(-4 m_H^2 m_W^2+m_H^4+12 m_W^4\right)}{16 m_H^2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
Rewrite the result in a nicer way
/. SMP["m_W"]^2 -> h[SMP["m_W"]^2/SMP["m_H"]^2] SMP["m_H"]^2 /.
(totalDecayRate ["m_W"]^4 -> h[SMP["m_W"]^4/SMP["m_H"]^4] SMP["m_H"]^4) // FullSimplify //
SMPReplaceAll[#, h -> Identity] &
\frac{\alpha m_H^3 \sqrt{1-\frac{4 m_W^2}{m_H^2}} \left(\frac{12 m_W^4}{m_H^4}-\frac{4 m_W^2}{m_H^2}+1\right)}{16 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
= {
knownResults ["g_W"]^2/(64 Pi) SMP["m_H"]^3/SMP["m_W"]^2 Sqrt[1 - 4 SMP["m_W"]^2/
SMP["m_H"]^2] (1 - 4 SMP["m_W"]^2/SMP["m_H"]^2 + 12 SMP["m_W"]^4/SMP["m_H"]^4)} //
SMPReplaceAll[#, SMP["g_W"] -> SMP["e"]/SMP["sin_W"]] & //
ReplaceAll[#, SMP["e"]^2 -> 4 Pi SMP["alpha_fs"]] &;
[{totalDecayRate},
FCCompareResults, Factoring -> Simplify,
knownResultsText -> {"\tCompare to Gunion, Haber, Kane and Dawson, Higgs Hunter Guide, Eq 2.11:",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Gunion, Haber, Kane and Dawson, Higgs Hunter Guide, Eq 2.11:} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }20.96\text{ s.}