= "H -> F Fbar, EW, total decay rate, tree";
description If[ $FrontEnd === Null,
= False;
$FeynCalcStartupMessages Print[description];
];
If[ $Notebooks === False,
= False
$FeynCalcStartupMessages ];
= {"FeynArts"};
$LoadAddOns
<< FeynCalc`= 0;
$FAVerbose
[9, 3, 1]; FCCheckVersion
\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}
\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}
\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}
\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}
\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}
\text{If you use FeynArts in your research, please cite}
\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}
= InsertFields[CreateTopologies[0, 1 -> 2], {S[1]} ->
diagsLeptons {F[2, {l}], -F[2, {l}]}, InsertionLevel -> {Classes}];
[diagsLeptons, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
= InsertFields[CreateTopologies[0, 1 -> 2], {S[1]} ->
diagsQuarks {F[3, {l}], -F[3, {l}]}, InsertionLevel -> {Classes}];
[diagsQuarks, ColumnsXRows -> {2, 1}, Numbering -> Simple,
Paint-> None, ImageSize -> {512, 256}]; SheetHeader
[0] = FCFAConvert[CreateFeynAmp[diagsLeptons], IncomingMomenta -> {pH},
ampLeptons-> {p1, p2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> True, SMP -> True, Contract -> True, UndoChiralSplittings -> True,
DropSumOver -> {MLE[l] -> SMP["m_l"]}] FinalSubstitutions
i \left(\varphi (\overline{\text{p1}},m_l)\right).\left(-\frac{i \;\text{e} m_l}{2 m_W \left(\left.\sin (\theta _W\right)\right)}\right).\left(\varphi (-\overline{\text{p2}},m_l)\right)
[0] = FCFAConvert[CreateFeynAmp[diagsQuarks], IncomingMomenta -> {pH},
ampQuarks-> {k1, k2}, List -> False, ChangeDimension -> 4,
OutgoingMomenta -> True, SMP -> True, Contract -> True, UndoChiralSplittings -> True,
DropSumOver -> {MQU[l] -> SMP["m_q"]}] FinalSubstitutions
i \left(\varphi (\overline{\text{k1}},m_q)\right).\left(-\frac{i \;\text{e} m_q \delta _{\text{Col2}\;\text{Col3}}}{2 m_W \left(\left.\sin (\theta _W\right)\right)}\right).\left(\varphi (-\overline{\text{k2}},m_q)\right)
[1] = ampLeptons[0] // DiracSimplify ampLeptons
\frac{\text{e} m_l \left(\varphi (\overline{\text{p1}},m_l)\right).\left(\varphi (-\overline{\text{p2}},m_l)\right)}{2 m_W \left(\left.\sin (\theta _W\right)\right)}
[1] = ampQuarks[0] // DiracSimplify ampQuarks
\frac{\text{e} m_q \delta _{\text{Col2}\;\text{Col3}} \left(\varphi (\overline{\text{k1}},m_q)\right).\left(\varphi (-\overline{\text{k2}},m_q)\right)}{2 m_W \left(\left.\sin (\theta _W\right)\right)}
[];
FCClearScalarProducts[p1, p1] = SMP["m_l"]^2;
SP[k1, k1] = SMP["m_q"]^2;
SP[p2, p2] = SMP["m_l"]^2;
SP[k2, k2] = SMP["m_q"]^2;
SP[pH, pH] = SMP["m_H"]^2;
SP[p1, p2] = (SMP["m_H"]^2 - 2 SMP["m_l"]^2)/2;
SP[k1, k2] = (SMP["m_H"]^2 - 2 SMP["m_q"]^2)/2; SP
[0] = ampLeptons[1]*ComplexConjugate[ampLeptons[1]] //
ampLeptonsSquared// DiracSimplify // Simplify FermionSpinSum
\frac{\text{e}^2 m_l^2 \left(m_H^2-4 m_l^2\right)}{2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
[0] = ampQuarks[1]*ComplexConjugate[ampQuarks[1]] //
ampQuarksSquared// DiracSimplify // SUNSimplify FermionSpinSum
\frac{\text{e}^2 C_A m_q^2 \left(m_H^2-4 m_q^2\right)}{2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
$Assumptions = {SMP["m_H"] > 0, SMP["m_l"] > 0};
[m_] := 1/(16 Pi SMP["m_H"]) Sqrt[1 - 4 m^2 / SMP["m_H"]^2]; phaseSpacePrefactor
= phaseSpacePrefactor[SMP["m_l"]] ampLeptonsSquared[0] //
totalDecayRateLeptons ReplaceAll[#, SMP["e"]^2 -> 4 Pi SMP["alpha_fs"]] & // Simplify
\frac{\alpha m_l^2 \left(m_H^2-4 m_l^2\right){}^{3/2}}{8 m_H^2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
= phaseSpacePrefactor[SMP["m_q"]] ampQuarksSquared[0] //
totalDecayRateQuarks ReplaceAll[#, SMP["e"]^2 -> 4 Pi SMP["alpha_fs"]] & // Simplify
\frac{\alpha C_A m_q^2 \left(m_H^2-4 m_q^2\right){}^{3/2}}{8 m_H^2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
["m_H"])/(8 SMP["sin_W"]^2) ( SMP["m_l"]^2/SMP["m_W"]^2*
(AlphaFS SMP1 - 4 SMP["m_l"]^2/SMP["m_H"]^2)^(3/2)) - totalDecayRateLeptons // Factor (
-\frac{\alpha m_l^2 \left(\sqrt{m_H^2-4 m_l^2}-m_H \sqrt{\frac{m_H^2-4 m_l^2}{m_H^2}}\right) \left(m_H \sqrt{m_H^2-4 m_l^2} \sqrt{\frac{m_H^2-4 m_l^2}{m_H^2}}+2 m_H^2-8 m_l^2\right)}{8 m_H^2 m_W^2 \left(\left.\sin (\theta _W\right)\right){}^2}
= {
knownResults ["m_H"])/(8 SMP["sin_W"]^2) ( SMP["m_l"]^2/SMP["m_W"]^2*
(AlphaFS SMP1 - 4 SMP["m_l"]^2/SMP["m_H"]^2)^(3/2)),
(*SMP["alpha_fs"]*SMP["m_H"]*SMP["m_q"]^2*
(CA1 - (4*SMP["m_q"]^2)/SMP["m_H"]^2)^(3/2))/(8*SMP["m_W"]^2*SMP["sin_W"]^2)
(};
[{totalDecayRateLeptons, totalDecayRateQuarks},
FCCompareResults, Factoring -> Simplify,
knownResultsText -> {"\tCompare to Peskin and Schroeder,An Introduction to QFT, Final Project III, part (a):",
"CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];
\text{$\backslash $tCompare to Peskin and Schroeder,An Introduction to QFT, Final Project III, part (a):} \;\text{CORRECT.}
\text{$\backslash $tCPU Time used: }25.599\text{ s.}