Load
FeynCalc and the necessary add-ons or other packages
description = "El Nmu -> Mu Nuel, EW, total cross section, tree" ;
If [ $FrontEnd === Null ,
$FeynCalcStartupMessages = False ;
Print [ description] ;
] ;
If [ $Notebooks === False ,
$FeynCalcStartupMessages = False
] ;
$LoadAddOns = { "FeynArts" } ;
<< FeynCalc`
$FAVerbose = 0 ;
FCCheckVersion[ 9 , 3 , 1 ] ;
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation ‾ , check out the wiki ‾ or visit the forum . ‾ \text{FeynCalc }\;\text{10.0.0 (dev
version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the
}\underline{\text{online} \;\text{documentation}}\;\text{, check out the
}\underline{\text{wiki}}\;\text{ or visit the
}\underline{\text{forum}.} FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation , check out the wiki or visit the forum .
Please check our FAQ ‾ for answers to some common FeynCalc questions and have a look at the supplied examples . ‾ \text{Please check our
}\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc
questions and have a look at the supplied
}\underline{\text{examples}.} Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples .
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software. \text{If you use FeynCalc in your
research, please evaluate FeynCalcHowToCite[] to learn how to cite this
software.} If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package! \text{Please keep in mind that the proper
academic attribution of our work is crucial to ensure the future
development of this package!} Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual ‾ or visit www . feynarts . de . ‾ \text{FeynArts }\;\text{3.11 (3 Aug 2020)
patched for use with FeynCalc, for documentation see the
}\underline{\text{manual}}\;\text{ or visit
}\underline{\text{www}.\text{feynarts}.\text{de}.} FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www . feynarts . de .
If you use FeynArts in your research, please cite \text{If you use FeynArts in your
research, please cite} If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260 \text{ $\bullet $ T. Hahn, Comput. Phys.
Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260} ∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes [ q1, TraditionalForm ] := " \!\(\* SubscriptBox[ \( q \) , \( 1 \) ] \) " ;
MakeBoxes [ q2, TraditionalForm ] := " \!\(\* SubscriptBox[ \( q \) , \( 2 \) ] \) " ;
To avoid dealing with Goldstone bosons we do the computation in the
unitary gauge
InitializeModel[{ SM, UnitarySM}, GenericModel -> { Lorentz, UnitaryLorentz}] ;
diags = InsertFields[ CreateTopologies[ 0 , 2 -> 2 ],
{ F [ 2 , { 1 }], F [ 1 , { 2 }]} -> { F [ 1 , { 1 }], F [ 2 , { 2 }]}, InsertionLevel -> { Classes},
Model -> { SM, UnitarySM}, GenericModel -> { Lorentz, UnitaryLorentz}] ;
Paint[ diags, ColumnsXRows -> { 2 , 1 }, Numbering -> Simple,
SheetHeader -> None , ImageSize -> { 512 , 256 }] ;
Obtain the amplitude
amp[ 0 ] = FCFAConvert[ CreateFeynAmp[ diags, GaugeRules -> { FAGaugeXi[ W | Z ] -> Infinity }],
IncomingMomenta -> { p , q1}, OutgoingMomenta -> { q2, k }, ChangeDimension -> 4 , List -> False ,
SMP -> True , Contract -> True , DropSumOver -> True ,
FinalSubstitutions -> { SMP[ "e" ] -> Sqrt [ 8 / Sqrt [ 2 ] * SMP[ "G_F" ] *
SMP[ "m_W" ] ^ 2 SMP[ "sin_W" ] ^ 2 ]}]
− 2 2 G F m W 2 ( φ ( q 2 ‾ ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( p ‾ , m e ) ) ( φ ( k ‾ , m μ ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( q 1 ‾ ) ) ( k ‾ − q 1 ‾ ) 2 − m W 2 − 2 2 G F ( φ ( k ‾ , m μ ) ) . ( γ ˉ ⋅ ( k ‾ − q 1 ‾ ) ) . γ ˉ 7 . ( φ ( q 1 ‾ ) ) ( φ ( q 2 ‾ ) ) . ( γ ˉ ⋅ ( q 1 ‾ − k ‾ ) ) . γ ˉ 7 . ( φ ( p ‾ , m e ) ) ( k ‾ − q 1 ‾ ) 2 − m W 2 -\frac{2 \sqrt{2} G_F m_W^2 \left(\varphi
(\overline{q_2})\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma
}^7.\left(\varphi (\overline{p},m_e)\right) \left(\varphi
(\overline{k},m_{\mu })\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma
}^7.\left(\varphi
(\overline{q_1})\right)}{(\overline{k}-\overline{q_1}){}^2-m_W^2}-\frac{2
\sqrt{2} G_F \left(\varphi (\overline{k},m_{\mu
})\right).\left(\bar{\gamma }\cdot
\left(\overline{k}-\overline{q_1}\right)\right).\bar{\gamma
}^7.\left(\varphi (\overline{q_1})\right) \left(\varphi
(\overline{q_2})\right).\left(\bar{\gamma }\cdot
\left(\overline{q_1}-\overline{k}\right)\right).\bar{\gamma
}^7.\left(\varphi
(\overline{p},m_e)\right)}{(\overline{k}-\overline{q_1}){}^2-m_W^2} − ( k − q 1 ) 2 − m W 2 2 2 G F m W 2 ( φ ( q 2 ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( p , m e ) ) ( φ ( k , m μ ) ) . γ ˉ Lor1 . γ ˉ 7 . ( φ ( q 1 ) ) − ( k − q 1 ) 2 − m W 2 2 2 G F ( φ ( k , m μ ) ) . ( γ ˉ ⋅ ( k − q 1 ) ) . γ ˉ 7 . ( φ ( q 1 ) ) ( φ ( q 2 ) ) . ( γ ˉ ⋅ ( q 1 − k ) ) . γ ˉ 7 . ( φ ( p , m e ) )
Fix the kinematics
FCClearScalarProducts[] ;
SetMandelstam[ s , t , u , p , q1, - q2, - k , SMP[ "m_e" ], 0 , 0 , SMP[ "m_mu" ]] ;
Square the amplitude
There is no polarization averaging for neutrinos here, as right
handed neutrinos do not interact
ampSquared[ 0 ] = (amp[ 0 ] (ComplexConjugate[ amp[ 0 ]] )) //
FermionSpinSum[ #, ExtraFactor -> 1 / 2 ] & // DiracSimplify // Factor
4 G F 2 ( − 2 m e 2 m μ 6 + 2 s m e 2 m μ 4 − 2 s t m e 2 m μ 2 + 2 s m e 2 m μ 2 m W 2 − 4 s m e 2 m W 4 + t 2 m e 2 m μ 2 + t m e 2 m μ 4 − 2 t u m e 2 m μ 2 − 2 t m e 2 m μ 2 m W 2 + 2 u m e 2 m μ 4 + 6 u m e 2 m μ 2 m W 2 + 4 m e 2 m μ 2 m W 4 − m μ 8 − s 2 m μ 4 + s 2 t m μ 2 − 2 s 2 m μ 2 m W 2 + 4 s 2 m W 4 + 2 s m μ 6 − 2 s t m μ 4 + 2 s t u m μ 2 − 2 s u m μ 4 − 4 s u m μ 2 m W 2 + 2 s m μ 4 m W 2 − 4 s m μ 2 m W 4 − t 3 m μ 2 + t 2 m μ 4 + 2 t 2 m μ 2 m W 2 + t m μ 6 + t u 2 m μ 2 − 2 t u m μ 4 − 2 t m μ 4 m W 2 − u 2 m μ 4 − 2 u 2 m μ 2 m W 2 + 2 u m μ 6 + 2 u m μ 4 m W 2 ) 1 ( k ‾ − q 1 ‾ ) 2 − m W 2 2 4 G_F^2 \left(-2 m_e^2 m_{\mu }^6+2 s
m_e^2 m_{\mu }^4-2 s t m_e^2 m_{\mu }^2+2 s m_e^2 m_{\mu }^2 m_W^2-4 s
m_e^2 m_W^4+t^2 m_e^2 m_{\mu }^2+t m_e^2 m_{\mu }^4-2 t u m_e^2 m_{\mu
}^2-2 t m_e^2 m_{\mu }^2 m_W^2+2 u m_e^2 m_{\mu }^4+6 u m_e^2 m_{\mu }^2
m_W^2+4 m_e^2 m_{\mu }^2 m_W^4-m_{\mu }^8-s^2 m_{\mu }^4+s^2 t m_{\mu
}^2-2 s^2 m_{\mu }^2 m_W^2+4 s^2 m_W^4+2 s m_{\mu }^6-2 s t m_{\mu }^4+2
s t u m_{\mu }^2-2 s u m_{\mu }^4-4 s u m_{\mu }^2 m_W^2+2 s m_{\mu }^4
m_W^2-4 s m_{\mu }^2 m_W^4-t^3 m_{\mu }^2+t^2 m_{\mu }^4+2 t^2 m_{\mu
}^2 m_W^2+t m_{\mu }^6+t u^2 m_{\mu }^2-2 t u m_{\mu }^4-2 t m_{\mu }^4
m_W^2-u^2 m_{\mu }^4-2 u^2 m_{\mu }^2 m_W^2+2 u m_{\mu }^6+2 u m_{\mu
}^4 m_W^2\right)
\frac{1}{(\overline{k}-\overline{q_1}){}^2-m_W^2}{}^2 4 G F 2 ( − 2 m e 2 m μ 6 + 2 s m e 2 m μ 4 − 2 s t m e 2 m μ 2 + 2 s m e 2 m μ 2 m W 2 − 4 s m e 2 m W 4 + t 2 m e 2 m μ 2 + t m e 2 m μ 4 − 2 t u m e 2 m μ 2 − 2 t m e 2 m μ 2 m W 2 + 2 u m e 2 m μ 4 + 6 u m e 2 m μ 2 m W 2 + 4 m e 2 m μ 2 m W 4 − m μ 8 − s 2 m μ 4 + s 2 t m μ 2 − 2 s 2 m μ 2 m W 2 + 4 s 2 m W 4 + 2 s m μ 6 − 2 s t m μ 4 + 2 s t u m μ 2 − 2 s u m μ 4 − 4 s u m μ 2 m W 2 + 2 s m μ 4 m W 2 − 4 s m μ 2 m W 4 − t 3 m μ 2 + t 2 m μ 4 + 2 t 2 m μ 2 m W 2 + t m μ 6 + t u 2 m μ 2 − 2 t u m μ 4 − 2 t m μ 4 m W 2 − u 2 m μ 4 − 2 u 2 m μ 2 m W 2 + 2 u m μ 6 + 2 u m μ 4 m W 2 ) ( k − q 1 ) 2 − m W 2 1 2
In the following we neglect the momentum in the W-propagator as
compared to the W-mass. This is a very good approximation at low
energies, as then (k-q1)^2 <= m_mu^2 << m_W^2.
ampSquared[ 1 ] = ampSquared[ 0 ] // FCE // ReplaceAll [ #, { k - q1 -> 0 }] & //
FeynAmpDenominatorExplicit // Series [ #, { SMP[ "m_W" ], Infinity , 0 }] & // Normal
16 G F 2 ( m e 2 m μ 2 − s m e 2 − s m μ 2 + s 2 ) 16 G_F^2 \left(m_e^2 m_{\mu }^2-s m_e^2-s
m_{\mu }^2+s^2\right) 16 G F 2 ( m e 2 m μ 2 − s m e 2 − s m μ 2 + s 2 )
Total cross section
The total cross-section
prefac = 4 Pi / (64 Pi ^ 2 s ) Sqrt [ (s - SMP[ "m_mu" ] ^ 2 )^ 2 ] / Sqrt [ (s - SMP[ "m_e" ] ^ 2 )^ 2 ]
( s − m μ 2 ) 2 16 π s ( s − m e 2 ) 2 \frac{\sqrt{\left(s-m_{\mu
}^2\right){}^2}}{16 \pi s \sqrt{\left(s-m_e^2\right){}^2}} 16 π s ( s − m e 2 ) 2 ( s − m μ 2 ) 2
crossSectionTotal = prefac* ampSquared[ 1 ] // PowerExpand
G F 2 ( s − m μ 2 ) ( m e 2 m μ 2 − s m e 2 − s m μ 2 + s 2 ) π s ( s − m e 2 ) \frac{G_F^2 \left(s-m_{\mu }^2\right)
\left(m_e^2 m_{\mu }^2-s m_e^2-s m_{\mu }^2+s^2\right)}{\pi s
\left(s-m_e^2\right)} π s ( s − m e 2 ) G F 2 ( s − m μ 2 ) ( m e 2 m μ 2 − s m e 2 − s m μ 2 + s 2 )
Check the final results
knownResults = {
(SMP[ "G_F" ] ^ 2 * (s - SMP[ "m_mu" ] ^ 2 )^ 2 )/ (Pi * s )
} ;
FCCompareResults[{ crossSectionTotal},
knownResults,
Text -> { " \t Compare to Greiner and Mueller, Gauge Theory of Weak Interactions, Chapter 3:" ,
"CORRECT." , "WRONG!" }, Interrupt -> { Hold [ Quit [ 1 ]], Automatic }] ;
Print [ " \t CPU Time used: " , Round [ N [ TimeUsed [], 3 ], 0.001 ], " s." ] ;
\ tCompare to Greiner and Mueller, Gauge Theory of Weak Interactions, Chapter 3: CORRECT. \text{$\backslash $tCompare to Greiner and
Mueller, Gauge Theory of Weak Interactions, Chapter 3:}
\;\text{CORRECT.} \tCompare to Greiner and Mueller, Gauge Theory of Weak Interactions, Chapter 3: CORRECT.
\ tCPU Time used: 24.14 s. \text{$\backslash $tCPU Time used:
}24.14\text{ s.} \tCPU Time used: 24.14 s.