EW manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "El Nmu -> Mu Nuel, EW, total cross section, tree";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

\text{If you use FeynArts in your research, please cite}

\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Nicer typesetting

MakeBoxes[q1, TraditionalForm] := "\!\(\*SubscriptBox[\(q\), \(1\)]\)";
MakeBoxes[q2, TraditionalForm] := "\!\(\*SubscriptBox[\(q\), \(2\)]\)";

To avoid dealing with Goldstone bosons we do the computation in the unitary gauge

InitializeModel[{SM, UnitarySM}, GenericModel -> {Lorentz, UnitaryLorentz}];
diags = InsertFields[CreateTopologies[0, 2 -> 2], 
        {F[2, {1}], F[1, {2}]} -> {F[1, {1}], F[2, {2}]}, InsertionLevel -> {Classes}, 
        Model -> {SM, UnitarySM}, GenericModel -> {Lorentz, UnitaryLorentz}]; 
 
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {512, 256}];

15ox5d7h4fl44

Obtain the amplitude

amp[0] = FCFAConvert[CreateFeynAmp[diags, GaugeRules -> {FAGaugeXi[W | Z] -> Infinity}], 
   IncomingMomenta -> {p, q1}, OutgoingMomenta -> {q2, k}, ChangeDimension -> 4, List -> False, 
   SMP -> True, Contract -> True, DropSumOver -> True,  
   FinalSubstitutions -> {SMP["e"] -> Sqrt[8/Sqrt[2]*SMP["G_F"]*
        SMP["m_W"]^2 SMP["sin_W"]^2]}]

-\frac{2 \sqrt{2} G_F m_W^2 \left(\varphi (\overline{q_2})\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma }^7.\left(\varphi (\overline{p},m_e)\right) \left(\varphi (\overline{k},m_{\mu })\right).\bar{\gamma }^{\text{Lor1}}.\bar{\gamma }^7.\left(\varphi (\overline{q_1})\right)}{(\overline{k}-\overline{q_1}){}^2-m_W^2}-\frac{2 \sqrt{2} G_F \left(\varphi (\overline{k},m_{\mu })\right).\left(\bar{\gamma }\cdot \left(\overline{k}-\overline{q_1}\right)\right).\bar{\gamma }^7.\left(\varphi (\overline{q_1})\right) \left(\varphi (\overline{q_2})\right).\left(\bar{\gamma }\cdot \left(\overline{q_1}-\overline{k}\right)\right).\bar{\gamma }^7.\left(\varphi (\overline{p},m_e)\right)}{(\overline{k}-\overline{q_1}){}^2-m_W^2}

Fix the kinematics

FCClearScalarProducts[];
SetMandelstam[s, t, u, p, q1, -q2, -k, SMP["m_e"], 0, 0, SMP["m_mu"]];

Square the amplitude

There is no polarization averaging for neutrinos here, as right handed neutrinos do not interact

ampSquared[0] = (amp[0] (ComplexConjugate[amp[0]])) // 
        FermionSpinSum[#, ExtraFactor -> 1/2] & // DiracSimplify // Factor

4 G_F^2 \left(-2 m_e^2 m_{\mu }^6+2 s m_e^2 m_{\mu }^4-2 s t m_e^2 m_{\mu }^2+2 s m_e^2 m_{\mu }^2 m_W^2-4 s m_e^2 m_W^4+t^2 m_e^2 m_{\mu }^2+t m_e^2 m_{\mu }^4-2 t u m_e^2 m_{\mu }^2-2 t m_e^2 m_{\mu }^2 m_W^2+2 u m_e^2 m_{\mu }^4+6 u m_e^2 m_{\mu }^2 m_W^2+4 m_e^2 m_{\mu }^2 m_W^4-m_{\mu }^8-s^2 m_{\mu }^4+s^2 t m_{\mu }^2-2 s^2 m_{\mu }^2 m_W^2+4 s^2 m_W^4+2 s m_{\mu }^6-2 s t m_{\mu }^4+2 s t u m_{\mu }^2-2 s u m_{\mu }^4-4 s u m_{\mu }^2 m_W^2+2 s m_{\mu }^4 m_W^2-4 s m_{\mu }^2 m_W^4-t^3 m_{\mu }^2+t^2 m_{\mu }^4+2 t^2 m_{\mu }^2 m_W^2+t m_{\mu }^6+t u^2 m_{\mu }^2-2 t u m_{\mu }^4-2 t m_{\mu }^4 m_W^2-u^2 m_{\mu }^4-2 u^2 m_{\mu }^2 m_W^2+2 u m_{\mu }^6+2 u m_{\mu }^4 m_W^2\right) \frac{1}{(\overline{k}-\overline{q_1}){}^2-m_W^2}{}^2

In the following we neglect the momentum in the W-propagator as compared to the W-mass. This is a very good approximation at low energies, as then (k-q1)^2 <= m_mu^2 << m_W^2.

ampSquared[1] = ampSquared[0] // FCE // ReplaceAll[#, {k - q1 -> 0}] & // 
        FeynAmpDenominatorExplicit // Series[#, {SMP["m_W"], Infinity, 0}] & // Normal

16 G_F^2 \left(m_e^2 m_{\mu }^2-s m_e^2-s m_{\mu }^2+s^2\right)

Total cross section

The total cross-section

prefac = 4 Pi/(64 Pi^2 s) Sqrt[(s - SMP["m_mu"]^2)^2]/Sqrt[(s - SMP["m_e"]^2)^2]

\frac{\sqrt{\left(s-m_{\mu }^2\right){}^2}}{16 \pi s \sqrt{\left(s-m_e^2\right){}^2}}

crossSectionTotal = prefac*ampSquared[1] // PowerExpand

\frac{G_F^2 \left(s-m_{\mu }^2\right) \left(m_e^2 m_{\mu }^2-s m_e^2-s m_{\mu }^2+s^2\right)}{\pi s \left(s-m_e^2\right)}

Check the final results

knownResults = {
    (SMP["G_F"]^2*(s - SMP["m_mu"]^2)^2)/(Pi*s) 
   };
FCCompareResults[{crossSectionTotal}, 
   knownResults, 
   Text -> {"\tCompare to Greiner and Mueller, Gauge Theory of Weak Interactions, Chapter 3:", 
     "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];

\text{$\backslash $tCompare to Greiner and Mueller, Gauge Theory of Weak Interactions, Chapter 3:} \;\text{CORRECT.}

\text{$\backslash $tCPU Time used: }24.14\text{ s.}