Load
FeynCalc and the necessary add-ons or other packages
description = "Anel El -> W W, EW, total cross section, tree" ;
If [ $FrontEnd === Null ,
$FeynCalcStartupMessages = False ;
Print [ description] ;
] ;
If [ $Notebooks === False ,
$FeynCalcStartupMessages = False
] ;
$LoadAddOns = { "FeynArts" } ;
<< FeynCalc`
$FAVerbose = 0 ;
FCCheckVersion[ 9 , 3 , 1 ] ;
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation ‾ , check out the wiki ‾ or visit the forum . ‾ \text{FeynCalc }\;\text{10.0.0 (dev
version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the
}\underline{\text{online} \;\text{documentation}}\;\text{, check out the
}\underline{\text{wiki}}\;\text{ or visit the
}\underline{\text{forum}.} FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation , check out the wiki or visit the forum .
Please check our FAQ ‾ for answers to some common FeynCalc questions and have a look at the supplied examples . ‾ \text{Please check our
}\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc
questions and have a look at the supplied
}\underline{\text{examples}.} Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples .
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software. \text{If you use FeynCalc in your
research, please evaluate FeynCalcHowToCite[] to learn how to cite this
software.} If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package! \text{Please keep in mind that the proper
academic attribution of our work is crucial to ensure the future
development of this package!} Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual ‾ or visit www . feynarts . de . ‾ \text{FeynArts }\;\text{3.11 (3 Aug 2020)
patched for use with FeynCalc, for documentation see the
}\underline{\text{manual}}\;\text{ or visit
}\underline{\text{www}.\text{feynarts}.\text{de}.} FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www . feynarts . de .
If you use FeynArts in your research, please cite \text{If you use FeynArts in your
research, please cite} If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260 \text{ $\bullet $ T. Hahn, Comput. Phys.
Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260} ∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Nicer typesetting
MakeBoxes [ p1, TraditionalForm ] := " \!\(\* SubscriptBox[ \( p \) , \( 1 \) ] \) " ;
MakeBoxes [ p2, TraditionalForm ] := " \!\(\* SubscriptBox[ \( p \) , \( 2 \) ] \) " ;
MakeBoxes [ k1, TraditionalForm ] := " \!\(\* SubscriptBox[ \( k \) , \( 1 \) ] \) " ;
MakeBoxes [ k2, TraditionalForm ] := " \!\(\* SubscriptBox[ \( k \) , \( 2 \) ] \) " ;
diags = InsertFields[ CreateTopologies[ 0 , 2 -> 2 ], { F [ 2 , { 1 }], - F [ 2 , { 1 }]} ->
{ V [ 3 ], - V [ 3 ]}, InsertionLevel -> { Classes}] ;
Paint[ diags, ColumnsXRows -> { 2 , 1 }, Numbering -> Simple,
SheetHeader -> None , ImageSize -> { 512 , 256 }] ;
Obtain the amplitude
amp[ 0 ] = FCFAConvert[ CreateFeynAmp[ diags], IncomingMomenta -> { p1, p2},
OutgoingMomenta -> { k1, k2}, UndoChiralSplittings -> True , ChangeDimension -> 4 ,
TransversePolarizationVectors -> { k1, k2},
List -> True , SMP -> True , Contract -> True , FinalSubstitutions -> { SMP[ "e" ] -> Sqrt [ 4 Pi SMP[ "alpha_fs" ]],
SMP[ "m_Z" ] -> SMP[ "m_W" ] / SMP[ "cos_W" ]}] ;
Let us separately mark the Higgs contribution separately
amp[ 1 ] = { markHiggs amp[ 0 ][[ 1 ]], amp[ 0 ][[ 2 ]], amp[ 0 ][[ 3 ]], amp[ 0 ][[ 4 ]]} ;
amp[ 2 ] = Total [ amp[ 1 ]] // DiracSimplify;
Fix the kinematics
FCClearScalarProducts[] ;
SetMandelstam[ s , t , u , p1, p2, - k1, - k2, SMP[ "m_e" ], SMP[ "m_e" ], SMP[ "m_W" ], SMP[ "m_W" ]] ;
Square the amplitude
ampSquared[ 0 ] = (amp[ 2 ] (ComplexConjugate[ amp[ 2 ]] )) //
FeynAmpDenominatorExplicit // FermionSpinSum[ #, ExtraFactor -> 1 / 2 ^ 2 ] & //
DiracSimplify // DoPolarizationSums[ #, k1] & // DoPolarizationSums[ #, k2] & //
TrickMandelstam[ #, { s , t , u , 2 SMP[ "m_e" ] ^ 2 + 2 SMP[ "m_W" ] ^ 2 }] &;
ampSquaredFull[ 0 ] = (ampSquared[ 0 ] /. markHiggs -> 1 /. u -> 2 SMP[ "m_e" ] ^ 2 + 2 SMP[ "m_W" ] ^ 2 - s - t ) //
Simplify ;
ampSquaredFull[ 1 ] = Simplify [ Numerator [ ampSquaredFull[ 0 ]] /.
SMP[ "cos_W" ] -> Sqrt [ 1 - SMP[ "sin_W" ] ^ 2 ]] / Denominator [ ampSquaredFull[ 0 ]]
− ( ( π 2 α 2 ( ( 2 s 2 ( s − m H 2 ) 2 m e 8 + 4 s ( s − m H 2 ) ( ( − ( ( s − 4 t ( sin ( θ W ) ) 2 ) m W 2 ) − 2 s t ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( ( − 4 t ( sin ( θ W ) ) 2 + s + 2 t ) m W 2 + s t ( 2 ( sin ( θ W ) ) 2 − 1 ) ) ) m e 6 + 2 ( ( ( 96 t 2 ( sin ( θ W ) ) 4 − 16 s t ( sin ( θ W ) ) 2 − 3 s 2 ) m W 4 − 2 s t ( 16 t ( sin ( θ W ) ) 4 + 4 ( 2 s − 3 t ) ( sin ( θ W ) ) 2 + 3 s ) m W 2 + s 2 t ( 8 t ( sin ( θ W ) ) 4 − 12 t ( sin ( θ W ) ) 2 + s + 6 t ) ) m H 4 − 2 s ( ( 96 t 2 ( sin ( θ W ) ) 4 − 16 t ( s + 3 t ) ( sin ( θ W ) ) 2 + s ( 2 t − 3 s ) ) m W 4 − s t ( 32 t ( sin ( θ W ) ) 4 + 8 ( 2 s − 3 t ) ( sin ( θ W ) ) 2 + 9 s + 4 t ) m W 2 + s 2 t ( 8 t ( sin ( θ W ) ) 4 − 8 t ( sin ( θ W ) ) 2 + s + 4 t ) ) m H 2 + s 2 ( ( 96 t 2 ( sin ( θ W ) ) 4 − 16 t ( s + 6 t ) ( sin ( θ W ) ) 2 − 3 s 2 + 24 t 2 + 4 s t ) m W 4 − 4 s t ( 8 t ( sin ( θ W ) ) 4 + ( 4 s − 6 t ) ( sin ( θ W ) ) 2 + 3 s + 4 t ) m W 2 + s 2 t ( 8 t ( sin ( θ W ) ) 4 − 4 t ( sin ( θ W ) ) 2 + s + 4 t ) ) ) m e 4 − ( 4 ( 2 ( − 48 t 2 ( sin ( θ W ) ) 4 − 2 s t ( sin ( θ W ) ) 2 + s 2 ) m W 6 + 2 t ( sin ( θ W ) ) 2 ( s ( 5 s − 4 t ) − 24 ( s − 2 t ) t ( sin ( θ W ) ) 2 ) m W 4 + s t ( 8 ( s − 4 t ) t ( sin ( θ W ) ) 4 + 12 t 2 ( sin ( θ W ) ) 2 − s ( 2 s + 3 t ) ) m W 2 + s 2 t 2 ( 4 ( s + 2 t ) ( sin ( θ W ) ) 4 − 2 ( s + 3 t ) ( sin ( θ W ) ) 2 + s + 2 t ) ) m H 4 − 4 s ( 4 ( − 48 t 2 ( sin ( θ W ) ) 4 − 2 ( s − 6 t ) t ( sin ( θ W ) ) 2 + s ( s + t ) ) m W 6 + 2 t ( − 48 ( s − 2 t ) t ( sin ( θ W ) ) 4 + 2 ( 5 s 2 − 10 t s − 12 t 2 ) ( sin ( θ W ) ) 2 − s ( s + t ) ) m W 4 − s t ( − 16 ( s − 4 t ) t ( sin ( θ W ) ) 4 + 4 ( s − 6 t ) t ( sin ( θ W ) ) 2 + 4 s 2 + 2 t 2 + 5 s t ) m W 2 + s 2 t 2 ( 8 ( s + 2 t ) ( sin ( θ W ) ) 4 − 2 ( s + 4 t ) ( sin ( θ W ) ) 2 + s + 3 t ) ) m H 2 + s 2 ( 8 ( − 48 t 2 ( sin ( θ W ) ) 4 − 2 ( s − 12 t ) t ( sin ( θ W ) ) 2 + s ( s + 2 t ) ) m W 6 + 4 t ( − 48 ( s − 2 t ) t ( sin ( θ W ) ) 4 + 2 ( 5 s 2 − 16 t s − 24 t 2 ) ( sin ( θ W ) ) 2 + s ( t − 2 s ) ) m W 4 − 4 s t ( − 8 ( s − 4 t ) t ( sin ( θ W ) ) 4 + 4 ( s − 3 t ) t ( sin ( θ W ) ) 2 + 2 s 2 + 2 t 2 + 3 s t ) m W 2 + s 2 t 2 ( 16 ( s + 2 t ) ( sin ( θ W ) ) 4 − 8 t ( sin ( θ W ) ) 2 + s + 4 t ) ) ) m e 2 + 2 ( s − m H 2 ) 2 ( 4 ( 24 t 2 ( sin ( θ W ) ) 4 + 4 s t ( sin ( θ W ) ) 2 + s 2 ) m W 8 − 8 t ( 4 t ( s + 6 t ) ( sin ( θ W ) ) 4 + s ( 3 t − 4 s ) ( sin ( θ W ) ) 2 + s 2 ) m W 6 + t ( 8 t ( 17 s 2 + 20 t s + 12 t 2 ) ( sin ( θ W ) ) 4 − 20 s 2 t ( sin ( θ W ) ) 2 + s 2 ( 4 s + 5 t ) ) m W 4 − 2 s t 2 ( 8 ( 2 s 2 + 3 t s + 2 t 2 ) ( sin ( θ W ) ) 4 − 4 ( 2 s 2 + 2 t s + t 2 ) ( sin ( θ W ) ) 2 + s ( 2 s + t ) ) m W 2 + s 2 t 3 ( s + t ) ( 8 ( sin ( θ W ) ) 4 − 4 ( sin ( θ W ) ) 2 + 1 ) ) ) m W 4 − 2 s ( 1 − ( sin ( θ W ) ) 2 ) ( 2 s 2 ( s − m H 2 ) 2 m e 8 + 2 s ( s − m H 2 ) ( ( ( 4 t ( sin ( θ W ) ) 2 − 2 s + 2 t ) m W 2 + s t ( 3 − 2 ( sin ( θ W ) ) 2 ) ) m H 2 + s ( 2 ( − 2 t ( sin ( θ W ) ) 2 + s + t ) m W 2 + s t ( 2 ( sin ( θ W ) ) 2 − 1 ) ) ) m e 6 + 2 ( ( ( s ( 2 t − 3 s ) − 8 ( s − 3 t ) t ( sin ( θ W ) ) 2 ) m W 4 + s t ( ( 4 t − 8 s ) ( sin ( θ W ) ) 2 − 5 s + 6 t ) m W 2 + s 2 t ( − 4 t ( sin ( θ W ) ) 2 + s + 3 t ) ) m H 4 + s ( 2 ( 3 s 2 + 8 t ( sin ( θ W ) ) 2 s − 4 t s + 6 t 2 ) m W 4 + 4 s t ( ( 4 s − 2 t ) ( sin ( θ W ) ) 2 + 4 s − t ) m W 2 + s 2 t ( 4 t ( sin ( θ W ) ) 2 − 2 s − 3 t ) ) m H 2 + s 2 ( ( − 3 s 2 + 6 t s + 12 t 2 − 8 t ( s + 3 t ) ( sin ( θ W ) ) 2 ) m W 4 − s t ( ( 8 s − 4 t ) ( sin ( θ W ) ) 2 + 11 s + 10 t ) m W 2 + s 2 t ( s + 2 t ) ) ) m e 4 + ( − 2 ( 4 ( s ( s + t ) − t ( s + 12 t ) ( sin ( θ W ) ) 2 ) m W 6 + 2 t ( ( 5 s 2 − 16 t s + 24 t 2 ) ( sin ( θ W ) ) 2 + s ( 5 s + t ) ) m W 4 − s t ( 4 s 2 + t s − 6 t 2 + 4 t ( t − s ) ( sin ( θ W ) ) 2 ) m W 2 + s 2 t 2 ( − 2 t ( sin ( θ W ) ) 2 + s + t ) ) m H 4 + s ( 8 ( 2 s 2 + 4 t s + 3 t 2 − 2 t ( s + 6 t ) ( sin ( θ W ) ) 2 ) m W 6 + 4 t ( 8 s 2 − 3 t s − 6 t 2 + 2 ( 5 s 2 − 22 t s + 12 t 2 ) ( sin ( θ W ) ) 2 ) m W 4 − 2 s t ( 8 s 2 + t s − 8 t 2 − 4 ( s − 2 t ) t ( sin ( θ W ) ) 2 ) m W 2 + s 2 t 2 ( 4 s ( sin ( θ W ) ) 2 + s + 2 t ) ) m H 2 − 4 s 2 ( 2 ( s 2 − t ( sin ( θ W ) ) 2 s + 3 t s + 3 t 2 ) m W 6 − t ( − 3 s 2 + ( 28 t − 5 s ) ( sin ( θ W ) ) 2 s + t s + 6 t 2 ) m W 4 − s t ( 2 s 2 + t s − t 2 + 2 t 2 ( sin ( θ W ) ) 2 ) m W 2 + s 2 t 2 ( s + t ) ( sin ( θ W ) ) 2 ) ) m e 2 + 4 ( s − m H 2 ) 2 m W 2 ( 2 ( 2 t ( s + 3 t ) ( sin ( θ W ) ) 2 + s ( s + t ) ) m W 6 − t ( ( − 8 s 2 + 10 t s + 24 t 2 ) ( sin ( θ W ) ) 2 + 3 s t ) m W 4 + 2 t ( s 3 + 2 t ( 3 s 2 + 5 t s + 3 t 2 ) ( sin ( θ W ) ) 2 ) m W 2 − s t 3 ( s + t ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) ) m W 2 + ( 2 s 2 ( s − m H 2 ) 2 m e 8 + 4 s ( s − m H 2 ) ( ( s t − ( s − 2 t ) m W 2 ) m H 2 + s 2 m W 2 ) m e 6 + 2 ( ( ( − 3 s 2 + 4 t s + 12 t 2 ) m W 4 − 4 s ( s − 2 t ) t m W 2 + s 2 t ( s + t ) ) m H 4 − 2 s 2 ( − 3 ( s − 2 t ) m W 4 + t ( 4 t − 7 s ) m W 2 + s 2 t ) m H 2 + s 2 ( ( − 3 s 2 + 8 t s + 12 t 2 ) m W 4 − 2 s t ( 5 s + 4 t ) m W 2 + s 2 t ( s + t ) ) ) m e 4 + ( − ( ( 8 s ( s + 2 t ) m W 6 + 4 t ( 10 s 2 + 13 t s + 12 t 2 ) m W 4 − 4 s t ( 2 s 2 + t s − 2 t 2 ) m W 2 + s 3 t 2 ) m H 4 ) − 8 s m W 2 ( − 2 ( s 2 + 3 t s + 3 t 2 ) m W 4 − 3 t ( 3 s 2 + 3 t s + 2 t 2 ) m W 2 + s t ( 2 s 2 + t s − t 2 ) ) m H 2 + 8 s 2 m W 2 ( − ( ( s 2 + 4 t s + 6 t 2 ) m W 4 ) − 4 s t ( s + t ) m W 2 + s 2 t ( s + t ) ) ) m e 2 + 8 ( s − m H 2 ) 2 m W 4 ( ( s 2 + 2 t s + 3 t 2 ) m W 4 + 2 t ( s 2 − 2 t s − 3 t 2 ) m W 2 + t ( s 3 + 3 t s 2 + 5 t 2 s + 3 t 3 ) ) ) ( s − s ( sin ( θ W ) ) 2 ) 2 ) ) / ( 2 s 2 t 2 ( s − m H 2 ) 2 m W 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 ( sin ( θ W ) ) 4 ) ) -\left(\left(\pi ^2 \alpha ^2
\left(\left(2 s^2 \left(s-m_H^2\right){}^2 m_e^8+4 s
\left(s-m_H^2\right) \left(\left(-\left(\left(s-4 t \left(\left.\sin
(\theta _W\right)\right){}^2\right) m_W^2\right)-2 s t
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)
m_H^2+s \left(\left(-4 t \left(\left.\sin (\theta
_W\right)\right){}^2+s+2 t\right) m_W^2+s t \left(2 \left(\left.\sin
(\theta _W\right)\right){}^2-1\right)\right)\right) m_e^6+2
\left(\left(\left(96 t^2 \left(\left.\sin (\theta
_W\right)\right){}^4-16 s t \left(\left.\sin (\theta
_W\right)\right){}^2-3 s^2\right) m_W^4-2 s t \left(16 t
\left(\left.\sin (\theta _W\right)\right){}^4+4 (2 s-3 t)
\left(\left.\sin (\theta _W\right)\right){}^2+3 s\right) m_W^2+s^2 t
\left(8 t \left(\left.\sin (\theta _W\right)\right){}^4-12 t
\left(\left.\sin (\theta _W\right)\right){}^2+s+6 t\right)\right)
m_H^4-2 s \left(\left(96 t^2 \left(\left.\sin (\theta
_W\right)\right){}^4-16 t (s+3 t) \left(\left.\sin (\theta
_W\right)\right){}^2+s (2 t-3 s)\right) m_W^4-s t \left(32 t
\left(\left.\sin (\theta _W\right)\right){}^4+8 (2 s-3 t)
\left(\left.\sin (\theta _W\right)\right){}^2+9 s+4 t\right) m_W^2+s^2 t
\left(8 t \left(\left.\sin (\theta _W\right)\right){}^4-8 t
\left(\left.\sin (\theta _W\right)\right){}^2+s+4 t\right)\right)
m_H^2+s^2 \left(\left(96 t^2 \left(\left.\sin (\theta
_W\right)\right){}^4-16 t (s+6 t) \left(\left.\sin (\theta
_W\right)\right){}^2-3 s^2+24 t^2+4 s t\right) m_W^4-4 s t \left(8 t
\left(\left.\sin (\theta _W\right)\right){}^4+(4 s-6 t) \left(\left.\sin
(\theta _W\right)\right){}^2+3 s+4 t\right) m_W^2+s^2 t \left(8 t
\left(\left.\sin (\theta _W\right)\right){}^4-4 t \left(\left.\sin
(\theta _W\right)\right){}^2+s+4 t\right)\right)\right) m_e^4-\left(4
\left(2 \left(-48 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-2 s
t \left(\left.\sin (\theta _W\right)\right){}^2+s^2\right) m_W^6+2 t
\left(\left.\sin (\theta _W\right)\right){}^2 \left(s (5 s-4 t)-24 (s-2
t) t \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4+s t
\left(8 (s-4 t) t \left(\left.\sin (\theta _W\right)\right){}^4+12 t^2
\left(\left.\sin (\theta _W\right)\right){}^2-s (2 s+3 t)\right)
m_W^2+s^2 t^2 \left(4 (s+2 t) \left(\left.\sin (\theta
_W\right)\right){}^4-2 (s+3 t) \left(\left.\sin (\theta
_W\right)\right){}^2+s+2 t\right)\right) m_H^4-4 s \left(4 \left(-48 t^2
\left(\left.\sin (\theta _W\right)\right){}^4-2 (s-6 t) t
\left(\left.\sin (\theta _W\right)\right){}^2+s (s+t)\right) m_W^6+2 t
\left(-48 (s-2 t) t \left(\left.\sin (\theta _W\right)\right){}^4+2
\left(5 s^2-10 t s-12 t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2-s (s+t)\right) m_W^4-s t \left(-16 (s-4 t) t
\left(\left.\sin (\theta _W\right)\right){}^4+4 (s-6 t) t
\left(\left.\sin (\theta _W\right)\right){}^2+4 s^2+2 t^2+5 s t\right)
m_W^2+s^2 t^2 \left(8 (s+2 t) \left(\left.\sin (\theta
_W\right)\right){}^4-2 (s+4 t) \left(\left.\sin (\theta
_W\right)\right){}^2+s+3 t\right)\right) m_H^2+s^2 \left(8 \left(-48 t^2
\left(\left.\sin (\theta _W\right)\right){}^4-2 (s-12 t) t
\left(\left.\sin (\theta _W\right)\right){}^2+s (s+2 t)\right) m_W^6+4 t
\left(-48 (s-2 t) t \left(\left.\sin (\theta _W\right)\right){}^4+2
\left(5 s^2-16 t s-24 t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2+s (t-2 s)\right) m_W^4-4 s t \left(-8 (s-4 t) t
\left(\left.\sin (\theta _W\right)\right){}^4+4 (s-3 t) t
\left(\left.\sin (\theta _W\right)\right){}^2+2 s^2+2 t^2+3 s t\right)
m_W^2+s^2 t^2 \left(16 (s+2 t) \left(\left.\sin (\theta
_W\right)\right){}^4-8 t \left(\left.\sin (\theta
_W\right)\right){}^2+s+4 t\right)\right)\right) m_e^2+2
\left(s-m_H^2\right){}^2 \left(4 \left(24 t^2 \left(\left.\sin (\theta
_W\right)\right){}^4+4 s t \left(\left.\sin (\theta
_W\right)\right){}^2+s^2\right) m_W^8-8 t \left(4 t (s+6 t)
\left(\left.\sin (\theta _W\right)\right){}^4+s (3 t-4 s)
\left(\left.\sin (\theta _W\right)\right){}^2+s^2\right) m_W^6+t \left(8
t \left(17 s^2+20 t s+12 t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^4-20 s^2 t \left(\left.\sin (\theta
_W\right)\right){}^2+s^2 (4 s+5 t)\right) m_W^4-2 s t^2 \left(8 \left(2
s^2+3 t s+2 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^4-4
\left(2 s^2+2 t s+t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2+s (2 s+t)\right) m_W^2+s^2 t^3 (s+t) \left(8
\left(\left.\sin (\theta _W\right)\right){}^4-4 \left(\left.\sin (\theta
_W\right)\right){}^2+1\right)\right)\right) m_W^4-2 s
\left(1-\left(\left.\sin (\theta _W\right)\right){}^2\right) \left(2 s^2
\left(s-m_H^2\right){}^2 m_e^8+2 s \left(s-m_H^2\right)
\left(\left(\left(4 t \left(\left.\sin (\theta _W\right)\right){}^2-2
s+2 t\right) m_W^2+s t \left(3-2 \left(\left.\sin (\theta
_W\right)\right){}^2\right)\right) m_H^2+s \left(2 \left(-2 t
\left(\left.\sin (\theta _W\right)\right){}^2+s+t\right) m_W^2+s t
\left(2 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right) m_e^6+2 \left(\left(\left(s
(2 t-3 s)-8 (s-3 t) t \left(\left.\sin (\theta
_W\right)\right){}^2\right) m_W^4+s t \left((4 t-8 s) \left(\left.\sin
(\theta _W\right)\right){}^2-5 s+6 t\right) m_W^2+s^2 t \left(-4 t
\left(\left.\sin (\theta _W\right)\right){}^2+s+3 t\right)\right)
m_H^4+s \left(2 \left(3 s^2+8 t \left(\left.\sin (\theta
_W\right)\right){}^2 s-4 t s+6 t^2\right) m_W^4+4 s t \left((4 s-2 t)
\left(\left.\sin (\theta _W\right)\right){}^2+4 s-t\right) m_W^2+s^2 t
\left(4 t \left(\left.\sin (\theta _W\right)\right){}^2-2 s-3
t\right)\right) m_H^2+s^2 \left(\left(-3 s^2+6 t s+12 t^2-8 t (s+3 t)
\left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4-s t \left((8
s-4 t) \left(\left.\sin (\theta _W\right)\right){}^2+11 s+10 t\right)
m_W^2+s^2 t (s+2 t)\right)\right) m_e^4+\left(-2 \left(4 \left(s (s+t)-t
(s+12 t) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^6+2 t
\left(\left(5 s^2-16 t s+24 t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2+s (5 s+t)\right) m_W^4-s t \left(4 s^2+t s-6 t^2+4
t (t-s) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^2
t^2 \left(-2 t \left(\left.\sin (\theta
_W\right)\right){}^2+s+t\right)\right) m_H^4+s \left(8 \left(2 s^2+4 t
s+3 t^2-2 t (s+6 t) \left(\left.\sin (\theta _W\right)\right){}^2\right)
m_W^6+4 t \left(8 s^2-3 t s-6 t^2+2 \left(5 s^2-22 t s+12 t^2\right)
\left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4-2 s t \left(8
s^2+t s-8 t^2-4 (s-2 t) t \left(\left.\sin (\theta
_W\right)\right){}^2\right) m_W^2+s^2 t^2 \left(4 s \left(\left.\sin
(\theta _W\right)\right){}^2+s+2 t\right)\right) m_H^2-4 s^2 \left(2
\left(s^2-t \left(\left.\sin (\theta _W\right)\right){}^2 s+3 t s+3
t^2\right) m_W^6-t \left(-3 s^2+(28 t-5 s) \left(\left.\sin (\theta
_W\right)\right){}^2 s+t s+6 t^2\right) m_W^4-s t \left(2 s^2+t s-t^2+2
t^2 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^2 t^2
(s+t) \left(\left.\sin (\theta _W\right)\right){}^2\right)\right)
m_e^2+4 \left(s-m_H^2\right){}^2 m_W^2 \left(2 \left(2 t (s+3 t)
\left(\left.\sin (\theta _W\right)\right){}^2+s (s+t)\right) m_W^6-t
\left(\left(-8 s^2+10 t s+24 t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2+3 s t\right) m_W^4+2 t \left(s^3+2 t \left(3 s^2+5
t s+3 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2\right)
m_W^2-s t^3 (s+t) \left(2 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right) m_W^2+\left(2 s^2
\left(s-m_H^2\right){}^2 m_e^8+4 s \left(s-m_H^2\right) \left(\left(s
t-(s-2 t) m_W^2\right) m_H^2+s^2 m_W^2\right) m_e^6+2
\left(\left(\left(-3 s^2+4 t s+12 t^2\right) m_W^4-4 s (s-2 t) t
m_W^2+s^2 t (s+t)\right) m_H^4-2 s^2 \left(-3 (s-2 t) m_W^4+t (4 t-7 s)
m_W^2+s^2 t\right) m_H^2+s^2 \left(\left(-3 s^2+8 t s+12 t^2\right)
m_W^4-2 s t (5 s+4 t) m_W^2+s^2 t (s+t)\right)\right)
m_e^4+\left(-\left(\left(8 s (s+2 t) m_W^6+4 t \left(10 s^2+13 t s+12
t^2\right) m_W^4-4 s t \left(2 s^2+t s-2 t^2\right) m_W^2+s^3 t^2\right)
m_H^4\right)-8 s m_W^2 \left(-2 \left(s^2+3 t s+3 t^2\right) m_W^4-3 t
\left(3 s^2+3 t s+2 t^2\right) m_W^2+s t \left(2 s^2+t
s-t^2\right)\right) m_H^2+8 s^2 m_W^2 \left(-\left(\left(s^2+4 t s+6
t^2\right) m_W^4\right)-4 s t (s+t) m_W^2+s^2 t (s+t)\right)\right)
m_e^2+8 \left(s-m_H^2\right){}^2 m_W^4 \left(\left(s^2+2 t s+3
t^2\right) m_W^4+2 t \left(s^2-2 t s-3 t^2\right) m_W^2+t \left(s^3+3 t
s^2+5 t^2 s+3 t^3\right)\right)\right) \left(s-s \left(\left.\sin
(\theta _W\right)\right){}^2\right){}^2\right)\right)/\left(2 s^2 t^2
\left(s-m_H^2\right){}^2 m_W^4 \left(m_W^2-s \left(\left.\cos (\theta
_W\right)\right){}^2\right){}^2 \left(\left.\sin (\theta
_W\right)\right){}^4\right)\right) − ( ( π 2 α 2 ( ( 2 s 2 ( s − m H 2 ) 2 m e 8 + 4 s ( s − m H 2 ) ( ( − ( ( s − 4 t ( sin ( θ W ) ) 2 ) m W 2 ) − 2 s t ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( ( − 4 t ( sin ( θ W ) ) 2 + s + 2 t ) m W 2 + s t ( 2 ( sin ( θ W ) ) 2 − 1 ) ) ) m e 6 + 2 ( ( ( 96 t 2 ( sin ( θ W ) ) 4 − 16 s t ( sin ( θ W ) ) 2 − 3 s 2 ) m W 4 − 2 s t ( 16 t ( sin ( θ W ) ) 4 + 4 ( 2 s − 3 t ) ( sin ( θ W ) ) 2 + 3 s ) m W 2 + s 2 t ( 8 t ( sin ( θ W ) ) 4 − 12 t ( sin ( θ W ) ) 2 + s + 6 t ) ) m H 4 − 2 s ( ( 96 t 2 ( sin ( θ W ) ) 4 − 16 t ( s + 3 t ) ( sin ( θ W ) ) 2 + s ( 2 t − 3 s ) ) m W 4 − s t ( 32 t ( sin ( θ W ) ) 4 + 8 ( 2 s − 3 t ) ( sin ( θ W ) ) 2 + 9 s + 4 t ) m W 2 + s 2 t ( 8 t ( sin ( θ W ) ) 4 − 8 t ( sin ( θ W ) ) 2 + s + 4 t ) ) m H 2 + s 2 ( ( 96 t 2 ( sin ( θ W ) ) 4 − 16 t ( s + 6 t ) ( sin ( θ W ) ) 2 − 3 s 2 + 24 t 2 + 4 s t ) m W 4 − 4 s t ( 8 t ( sin ( θ W ) ) 4 + ( 4 s − 6 t ) ( sin ( θ W ) ) 2 + 3 s + 4 t ) m W 2 + s 2 t ( 8 t ( sin ( θ W ) ) 4 − 4 t ( sin ( θ W ) ) 2 + s + 4 t ) ) ) m e 4 − ( 4 ( 2 ( − 48 t 2 ( sin ( θ W ) ) 4 − 2 s t ( sin ( θ W ) ) 2 + s 2 ) m W 6 + 2 t ( sin ( θ W ) ) 2 ( s ( 5 s − 4 t ) − 24 ( s − 2 t ) t ( sin ( θ W ) ) 2 ) m W 4 + s t ( 8 ( s − 4 t ) t ( sin ( θ W ) ) 4 + 12 t 2 ( sin ( θ W ) ) 2 − s ( 2 s + 3 t ) ) m W 2 + s 2 t 2 ( 4 ( s + 2 t ) ( sin ( θ W ) ) 4 − 2 ( s + 3 t ) ( sin ( θ W ) ) 2 + s + 2 t ) ) m H 4 − 4 s ( 4 ( − 48 t 2 ( sin ( θ W ) ) 4 − 2 ( s − 6 t ) t ( sin ( θ W ) ) 2 + s ( s + t ) ) m W 6 + 2 t ( − 48 ( s − 2 t ) t ( sin ( θ W ) ) 4 + 2 ( 5 s 2 − 10 t s − 12 t 2 ) ( sin ( θ W ) ) 2 − s ( s + t ) ) m W 4 − s t ( − 16 ( s − 4 t ) t ( sin ( θ W ) ) 4 + 4 ( s − 6 t ) t ( sin ( θ W ) ) 2 + 4 s 2 + 2 t 2 + 5 s t ) m W 2 + s 2 t 2 ( 8 ( s + 2 t ) ( sin ( θ W ) ) 4 − 2 ( s + 4 t ) ( sin ( θ W ) ) 2 + s + 3 t ) ) m H 2 + s 2 ( 8 ( − 48 t 2 ( sin ( θ W ) ) 4 − 2 ( s − 12 t ) t ( sin ( θ W ) ) 2 + s ( s + 2 t ) ) m W 6 + 4 t ( − 48 ( s − 2 t ) t ( sin ( θ W ) ) 4 + 2 ( 5 s 2 − 16 t s − 24 t 2 ) ( sin ( θ W ) ) 2 + s ( t − 2 s ) ) m W 4 − 4 s t ( − 8 ( s − 4 t ) t ( sin ( θ W ) ) 4 + 4 ( s − 3 t ) t ( sin ( θ W ) ) 2 + 2 s 2 + 2 t 2 + 3 s t ) m W 2 + s 2 t 2 ( 16 ( s + 2 t ) ( sin ( θ W ) ) 4 − 8 t ( sin ( θ W ) ) 2 + s + 4 t ) ) ) m e 2 + 2 ( s − m H 2 ) 2 ( 4 ( 24 t 2 ( sin ( θ W ) ) 4 + 4 s t ( sin ( θ W ) ) 2 + s 2 ) m W 8 − 8 t ( 4 t ( s + 6 t ) ( sin ( θ W ) ) 4 + s ( 3 t − 4 s ) ( sin ( θ W ) ) 2 + s 2 ) m W 6 + t ( 8 t ( 17 s 2 + 20 t s + 12 t 2 ) ( sin ( θ W ) ) 4 − 20 s 2 t ( sin ( θ W ) ) 2 + s 2 ( 4 s + 5 t ) ) m W 4 − 2 s t 2 ( 8 ( 2 s 2 + 3 t s + 2 t 2 ) ( sin ( θ W ) ) 4 − 4 ( 2 s 2 + 2 t s + t 2 ) ( sin ( θ W ) ) 2 + s ( 2 s + t ) ) m W 2 + s 2 t 3 ( s + t ) ( 8 ( sin ( θ W ) ) 4 − 4 ( sin ( θ W ) ) 2 + 1 ) ) ) m W 4 − 2 s ( 1 − ( sin ( θ W ) ) 2 ) ( 2 s 2 ( s − m H 2 ) 2 m e 8 + 2 s ( s − m H 2 ) ( ( ( 4 t ( sin ( θ W ) ) 2 − 2 s + 2 t ) m W 2 + s t ( 3 − 2 ( sin ( θ W ) ) 2 ) ) m H 2 + s ( 2 ( − 2 t ( sin ( θ W ) ) 2 + s + t ) m W 2 + s t ( 2 ( sin ( θ W ) ) 2 − 1 ) ) ) m e 6 + 2 ( ( ( s ( 2 t − 3 s ) − 8 ( s − 3 t ) t ( sin ( θ W ) ) 2 ) m W 4 + s t ( ( 4 t − 8 s ) ( sin ( θ W ) ) 2 − 5 s + 6 t ) m W 2 + s 2 t ( − 4 t ( sin ( θ W ) ) 2 + s + 3 t ) ) m H 4 + s ( 2 ( 3 s 2 + 8 t ( sin ( θ W ) ) 2 s − 4 t s + 6 t 2 ) m W 4 + 4 s t ( ( 4 s − 2 t ) ( sin ( θ W ) ) 2 + 4 s − t ) m W 2 + s 2 t ( 4 t ( sin ( θ W ) ) 2 − 2 s − 3 t ) ) m H 2 + s 2 ( ( − 3 s 2 + 6 t s + 12 t 2 − 8 t ( s + 3 t ) ( sin ( θ W ) ) 2 ) m W 4 − s t ( ( 8 s − 4 t ) ( sin ( θ W ) ) 2 + 11 s + 10 t ) m W 2 + s 2 t ( s + 2 t ) ) ) m e 4 + ( − 2 ( 4 ( s ( s + t ) − t ( s + 12 t ) ( sin ( θ W ) ) 2 ) m W 6 + 2 t ( ( 5 s 2 − 16 t s + 24 t 2 ) ( sin ( θ W ) ) 2 + s ( 5 s + t ) ) m W 4 − s t ( 4 s 2 + t s − 6 t 2 + 4 t ( t − s ) ( sin ( θ W ) ) 2 ) m W 2 + s 2 t 2 ( − 2 t ( sin ( θ W ) ) 2 + s + t ) ) m H 4 + s ( 8 ( 2 s 2 + 4 t s + 3 t 2 − 2 t ( s + 6 t ) ( sin ( θ W ) ) 2 ) m W 6 + 4 t ( 8 s 2 − 3 t s − 6 t 2 + 2 ( 5 s 2 − 22 t s + 12 t 2 ) ( sin ( θ W ) ) 2 ) m W 4 − 2 s t ( 8 s 2 + t s − 8 t 2 − 4 ( s − 2 t ) t ( sin ( θ W ) ) 2 ) m W 2 + s 2 t 2 ( 4 s ( sin ( θ W ) ) 2 + s + 2 t ) ) m H 2 − 4 s 2 ( 2 ( s 2 − t ( sin ( θ W ) ) 2 s + 3 t s + 3 t 2 ) m W 6 − t ( − 3 s 2 + ( 28 t − 5 s ) ( sin ( θ W ) ) 2 s + t s + 6 t 2 ) m W 4 − s t ( 2 s 2 + t s − t 2 + 2 t 2 ( sin ( θ W ) ) 2 ) m W 2 + s 2 t 2 ( s + t ) ( sin ( θ W ) ) 2 ) ) m e 2 + 4 ( s − m H 2 ) 2 m W 2 ( 2 ( 2 t ( s + 3 t ) ( sin ( θ W ) ) 2 + s ( s + t ) ) m W 6 − t ( ( − 8 s 2 + 10 t s + 24 t 2 ) ( sin ( θ W ) ) 2 + 3 s t ) m W 4 + 2 t ( s 3 + 2 t ( 3 s 2 + 5 t s + 3 t 2 ) ( sin ( θ W ) ) 2 ) m W 2 − s t 3 ( s + t ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) ) m W 2 + ( 2 s 2 ( s − m H 2 ) 2 m e 8 + 4 s ( s − m H 2 ) ( ( s t − ( s − 2 t ) m W 2 ) m H 2 + s 2 m W 2 ) m e 6 + 2 ( ( ( − 3 s 2 + 4 t s + 12 t 2 ) m W 4 − 4 s ( s − 2 t ) t m W 2 + s 2 t ( s + t ) ) m H 4 − 2 s 2 ( − 3 ( s − 2 t ) m W 4 + t ( 4 t − 7 s ) m W 2 + s 2 t ) m H 2 + s 2 ( ( − 3 s 2 + 8 t s + 12 t 2 ) m W 4 − 2 s t ( 5 s + 4 t ) m W 2 + s 2 t ( s + t ) ) ) m e 4 + ( − ( ( 8 s ( s + 2 t ) m W 6 + 4 t ( 10 s 2 + 13 t s + 12 t 2 ) m W 4 − 4 s t ( 2 s 2 + t s − 2 t 2 ) m W 2 + s 3 t 2 ) m H 4 ) − 8 s m W 2 ( − 2 ( s 2 + 3 t s + 3 t 2 ) m W 4 − 3 t ( 3 s 2 + 3 t s + 2 t 2 ) m W 2 + s t ( 2 s 2 + t s − t 2 ) ) m H 2 + 8 s 2 m W 2 ( − ( ( s 2 + 4 t s + 6 t 2 ) m W 4 ) − 4 s t ( s + t ) m W 2 + s 2 t ( s + t ) ) ) m e 2 + 8 ( s − m H 2 ) 2 m W 4 ( ( s 2 + 2 t s + 3 t 2 ) m W 4 + 2 t ( s 2 − 2 t s − 3 t 2 ) m W 2 + t ( s 3 + 3 t s 2 + 5 t 2 s + 3 t 3 ) ) ) ( s − s ( sin ( θ W ) ) 2 ) 2 ) ) / ( 2 s 2 t 2 ( s − m H 2 ) 2 m W 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 ( sin ( θ W ) ) 4 ) )
The Higgs diagram is needed to cancel the divergence that goes like
m_e*Sqrt[s] in the high energy limit. If we neglect the electron mass,
then this particular diagram does not contribute.
ampSquaredMassless[ 0 ] = (ampSquared[ 0 ] /. SMP[ "m_e" ] -> 0 /. u -> 2 SMP[ "m_W" ] ^ 2 - s - t ) //
Simplify ;
ampSquaredMassless[ 1 ] = Simplify [ Numerator [ ampSquaredMassless[ 0 ]] /.
SMP[ "cos_W" ] -> Sqrt [ 1 - SMP[ "sin_W" ] ^ 2 ]] / Denominator [ ampSquaredMassless[ 0 ]]
− 1 s 2 t 2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 π 2 α 2 ( 2 s t m W 2 ( 4 ( s 3 + s t 2 + 2 t 3 ) ( sin ( θ W ) ) 4 − 4 ( s 3 + 2 s t 2 + 5 t 3 ) ( sin ( θ W ) ) 2 − s t ( 10 s + 13 t ) ) + 4 m W 8 ( s 2 + 4 s t ( sin ( θ W ) ) 2 + 24 t 2 ( sin ( θ W ) ) 4 ) + 8 m W 6 ( 2 t ( s 2 + s t − 12 t 2 ) ( sin ( θ W ) ) 4 + s ( s 2 + 3 s t − 9 t 2 ) ( sin ( θ W ) ) 2 − s 2 ( s + 2 t ) ) + m W 4 ( s 2 ( 4 s 2 + 12 s t + 29 t 2 ) − 8 s ( s 3 + 6 s 2 t + 2 s t 2 − 12 t 3 ) ( sin ( θ W ) ) 2 + 4 ( s 4 + 10 s 3 t + 27 s 2 t 2 + 16 s t 3 + 24 t 4 ) ( sin ( θ W ) ) 4 ) + s 2 t ( s + t ) ( 4 ( s 2 + 2 s t + 3 t 2 ) ( sin ( θ W ) ) 4 − 8 ( s 2 + 2 s t + 2 t 2 ) ( sin ( θ W ) ) 2 + 4 s 2 + 8 s t + 9 t 2 ) ) -\frac{1}{s^2 t^2 \left(\left.\sin (\theta
_W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta
_W\right)\right){}^2\right){}^2}\pi ^2 \alpha ^2 \left(2 s t m_W^2
\left(4 \left(s^3+s t^2+2 t^3\right) \left(\left.\sin (\theta
_W\right)\right){}^4-4 \left(s^3+2 s t^2+5 t^3\right) \left(\left.\sin
(\theta _W\right)\right){}^2-s t (10 s+13 t)\right)+4 m_W^8 \left(s^2+4
s t \left(\left.\sin (\theta _W\right)\right){}^2+24 t^2
\left(\left.\sin (\theta _W\right)\right){}^4\right)+8 m_W^6 \left(2 t
\left(s^2+s t-12 t^2\right) \left(\left.\sin (\theta
_W\right)\right){}^4+s \left(s^2+3 s t-9 t^2\right) \left(\left.\sin
(\theta _W\right)\right){}^2-s^2 (s+2 t)\right)+m_W^4 \left(s^2 \left(4
s^2+12 s t+29 t^2\right)-8 s \left(s^3+6 s^2 t+2 s t^2-12 t^3\right)
\left(\left.\sin (\theta _W\right)\right){}^2+4 \left(s^4+10 s^3 t+27
s^2 t^2+16 s t^3+24 t^4\right) \left(\left.\sin (\theta
_W\right)\right){}^4\right)+s^2 t (s+t) \left(4 \left(s^2+2 s t+3
t^2\right) \left(\left.\sin (\theta _W\right)\right){}^4-8 \left(s^2+2 s
t+2 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2+4 s^2+8 s
t+9 t^2\right)\right) − s 2 t 2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 1 π 2 α 2 ( 2 s t m W 2 ( 4 ( s 3 + s t 2 + 2 t 3 ) ( sin ( θ W ) ) 4 − 4 ( s 3 + 2 s t 2 + 5 t 3 ) ( sin ( θ W ) ) 2 − s t ( 10 s + 13 t ) ) + 4 m W 8 ( s 2 + 4 s t ( sin ( θ W ) ) 2 + 24 t 2 ( sin ( θ W ) ) 4 ) + 8 m W 6 ( 2 t ( s 2 + s t − 12 t 2 ) ( sin ( θ W ) ) 4 + s ( s 2 + 3 s t − 9 t 2 ) ( sin ( θ W ) ) 2 − s 2 ( s + 2 t ) ) + m W 4 ( s 2 ( 4 s 2 + 12 s t + 29 t 2 ) − 8 s ( s 3 + 6 s 2 t + 2 s t 2 − 12 t 3 ) ( sin ( θ W ) ) 2 + 4 ( s 4 + 10 s 3 t + 27 s 2 t 2 + 16 s t 3 + 24 t 4 ) ( sin ( θ W ) ) 4 ) + s 2 t ( s + t ) ( 4 ( s 2 + 2 s t + 3 t 2 ) ( sin ( θ W ) ) 4 − 8 ( s 2 + 2 s t + 2 t 2 ) ( sin ( θ W ) ) 2 + 4 s 2 + 8 s t + 9 t 2 ) )
Total cross section
prefac = 1 / (16 Pi s ^ 2 );
integral = prefac* Integrate [ ampSquaredFull[ 1 ], t ] ;
logFreePart = SelectFree2[ integral, Log ] ;
logPartRaw = SelectNotFree2[ integral, Log ] // Simplify ;
tUpper = - 1 / 2 (s - 2 SMP[ "m_W" ] ^ 2 - 2 SMP[ "m_e" ] ^ 2 - Sqrt [ (s - 4 SMP[ "m_e" ] ^ 2 ) (s - 4 SMP[ "m_W" ] ^ 2 )] );
tLower = - 1 / 2 (s - 2 SMP[ "m_W" ] ^ 2 - 2 SMP[ "m_e" ] ^ 2 + Sqrt [ (s - 4 SMP[ "m_e" ] ^ 2 ) (s - 4 SMP[ "m_W" ] ^ 2 )] );
logPart = Numerator [ logPartRaw] / (Denominator [ logPartRaw] /. (- s SMP[ "cos_W" ] ^ 2 + SMP[ "m_W" ] ^ 2 )^ 2 ->
(- s SMP[ "cos_W" ] ^ 2 + SMP[ "m_W" ] ^ 2 ) (- s (1 - SMP[ "sin_W" ] ^ 2 ) + SMP[ "m_W" ] ^ 2 )) // Simplify
( π α 2 log ( t ) ( 2 m e 6 ( m H 2 ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) + s m W 2 ( s − 2 m W 2 ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) + m e 4 ( m H 2 ( s 2 m W 2 ( 4 ( sin ( θ W ) ) 2 − 5 ) + 2 s m W 4 ( 6 ( sin ( θ W ) ) 2 + 5 ) + 16 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 11 − 10 ( sin ( θ W ) ) 2 ) − 4 s m W 4 ( 2 ( sin ( θ W ) ) 2 + 5 ) + m W 6 ( 4 − 16 ( sin ( θ W ) ) 2 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m e 2 m W 2 ( m H 2 ( s 2 m W 2 ( 5 ( sin ( θ W ) ) 2 − 6 ) + s m W 4 ( 7 ( sin ( θ W ) ) 2 − 2 ) − 2 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 5 − 4 ( sin ( θ W ) ) 2 ) + s m W 4 ( 5 − 9 ( sin ( θ W ) ) 2 ) + 2 m W 6 ( ( sin ( θ W ) ) 2 − 1 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m W 4 ( s − m H 2 ) ( s 2 m W 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) + 2 s m W 4 ( 5 ( sin ( θ W ) ) 2 − 2 ) + 4 m W 6 ( sin ( θ W ) ) 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) ) / ( 16 s 3 m W 4 ( s − m H 2 ) ( sin ( θ W ) ) 4 ( s ( cos ( θ W ) ) 2 − m W 2 ) ) \left(\pi \alpha ^2 \log (t) \left(2
m_e^6 \left(m_H^2 \left(\left(4 m_W^4+s^2\right) \left(\left.\sin
(\theta _W\right)\right){}^2-s^2\right)+s m_W^2 \left(s-2 m_W^2\right)
\left(2 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)+m_e^4 \left(m_H^2 \left(s^2 m_W^2
\left(4 \left(\left.\sin (\theta _W\right)\right){}^2-5\right)+2 s m_W^4
\left(6 \left(\left.\sin (\theta _W\right)\right){}^2+5\right)+16 m_W^6
\left(\left.\sin (\theta _W\right)\right){}^2-s^3 \left(\left(\left.\sin
(\theta _W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2
\left(11-10 \left(\left.\sin (\theta _W\right)\right){}^2\right)-4 s
m_W^4 \left(2 \left(\left.\sin (\theta
_W\right)\right){}^2+5\right)+m_W^6 \left(4-16 \left(\left.\sin (\theta
_W\right)\right){}^2\right)+s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)+4 m_e^2 m_W^2 \left(m_H^2
\left(s^2 m_W^2 \left(5 \left(\left.\sin (\theta
_W\right)\right){}^2-6\right)+s m_W^4 \left(7 \left(\left.\sin (\theta
_W\right)\right){}^2-2\right)-2 m_W^6 \left(\left.\sin (\theta
_W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(5-4
\left(\left.\sin (\theta _W\right)\right){}^2\right)+s m_W^4 \left(5-9
\left(\left.\sin (\theta _W\right)\right){}^2\right)+2 m_W^6
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)+s^3
\left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)+4 m_W^4 \left(s-m_H^2\right)
\left(s^2 m_W^2 \left(2 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)+2 s m_W^4 \left(5 \left(\left.\sin (\theta
_W\right)\right){}^2-2\right)+4 m_W^6 \left(\left.\sin (\theta
_W\right)\right){}^2+s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)\right)/\left(16 s^3 m_W^4
\left(s-m_H^2\right) \left(\left.\sin (\theta _W\right)\right){}^4
\left(s \left(\left.\cos (\theta
_W\right)\right){}^2-m_W^2\right)\right) ( π α 2 log ( t ) ( 2 m e 6 ( m H 2 ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) + s m W 2 ( s − 2 m W 2 ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) + m e 4 ( m H 2 ( s 2 m W 2 ( 4 ( sin ( θ W ) ) 2 − 5 ) + 2 s m W 4 ( 6 ( sin ( θ W ) ) 2 + 5 ) + 16 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 11 − 10 ( sin ( θ W ) ) 2 ) − 4 s m W 4 ( 2 ( sin ( θ W ) ) 2 + 5 ) + m W 6 ( 4 − 16 ( sin ( θ W ) ) 2 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m e 2 m W 2 ( m H 2 ( s 2 m W 2 ( 5 ( sin ( θ W ) ) 2 − 6 ) + s m W 4 ( 7 ( sin ( θ W ) ) 2 − 2 ) − 2 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 5 − 4 ( sin ( θ W ) ) 2 ) + s m W 4 ( 5 − 9 ( sin ( θ W ) ) 2 ) + 2 m W 6 ( ( sin ( θ W ) ) 2 − 1 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m W 4 ( s − m H 2 ) ( s 2 m W 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) + 2 s m W 4 ( 5 ( sin ( θ W ) ) 2 − 2 ) + 4 m W 6 ( sin ( θ W ) ) 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) ) / ( 16 s 3 m W 4 ( s − m H 2 ) ( sin ( θ W ) ) 4 ( s ( cos ( θ W ) ) 2 − m W 2 ) )
xsectionPart1 = ((logFreePart /. { t -> tUpper} ) - (logFreePart /. { t -> tLower} )) //
Simplify // PowerExpand // Simplify
− ( ( π α 2 s − 4 m e 2 s − 4 m W 2 ( 12 s m e 4 ( m W 2 + s ( ( sin ( θ W ) ) 2 − 1 ) ) ( m H 4 ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) + s m H 2 ( s m W 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) + m W 4 ( 2 − 8 ( sin ( θ W ) ) 2 ) − s 2 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( − 6 s 2 m W 2 ( ( sin ( θ W ) ) 2 − 1 ) + 2 s m W 4 ( 8 ( sin ( θ W ) ) 2 − 9 ) + 12 m W 6 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + m e 2 ( − 2 s m H 2 m W 2 ( s 3 m W 2 ( − 108 ( sin ( θ W ) ) 4 + 212 ( sin ( θ W ) ) 2 − 123 ) + 2 s 2 m W 4 ( 176 ( sin ( θ W ) ) 4 − 216 ( sin ( θ W ) ) 2 − 21 ) + 8 s m W 6 ( 184 ( sin ( θ W ) ) 4 − 34 ( sin ( θ W ) ) 2 + 3 ) + 768 m W 8 ( sin ( θ W ) ) 4 + 6 s 4 ( 5 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 + 7 ) ) + m H 4 ( 18 s 4 m W 2 ( 2 ( sin ( θ W ) ) 4 − 5 ( sin ( θ W ) ) 2 + 3 ) − 2 s 3 m W 4 ( 66 ( sin ( θ W ) ) 4 − 136 ( sin ( θ W ) ) 2 + 81 ) + 4 s 2 m W 6 ( 88 ( sin ( θ W ) ) 4 − 120 ( sin ( θ W ) ) 2 + 3 ) + 16 s m W 8 ( sin ( θ W ) ) 2 ( 92 ( sin ( θ W ) ) 2 − 17 ) + 768 m W 10 ( sin ( θ W ) ) 4 − 3 s 5 ( ( sin ( θ W ) ) 2 − 1 ) 2 ) + s 2 m W 2 ( s 3 m W 2 ( − 120 ( sin ( θ W ) ) 4 + 248 ( sin ( θ W ) ) 2 − 147 ) + 4 s 2 m W 4 ( 88 ( sin ( θ W ) ) 4 − 114 ( sin ( θ W ) ) 2 − 3 ) + 4 s m W 6 ( 368 ( sin ( θ W ) ) 4 − 68 ( sin ( θ W ) ) 2 + 3 ) + 768 m W 8 ( sin ( θ W ) ) 4 + 12 s 4 ( 3 ( sin ( θ W ) ) 4 − 7 ( sin ( θ W ) ) 2 + 4 ) ) ) + s m W 4 ( s − m H 2 ) 2 ( 4 s 2 m W 2 ( 8 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 − 15 ) + 32 s m W 4 ( 20 ( sin ( θ W ) ) 4 − 8 ( sin ( θ W ) ) 2 + 3 ) + 96 m W 6 ( sin ( θ W ) ) 2 ( 4 ( sin ( θ W ) ) 2 − 1 ) + s 3 ( 60 ( sin ( θ W ) ) 4 − 128 ( sin ( θ W ) ) 2 + 63 ) ) ) ) / ( 96 s 4 m W 4 ( s − m H 2 ) 2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 ) ) -\left(\left(\pi \alpha ^2 \sqrt{s-4
m_e^2} \sqrt{s-4 m_W^2} \left(12 s m_e^4 \left(m_W^2+s
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)
\left(m_H^4 \left(\left(4 m_W^4+s^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2-s^2\right)+s m_H^2 \left(s m_W^2 \left(2
\left(\left.\sin (\theta _W\right)\right){}^2-1\right)+m_W^4 \left(2-8
\left(\left.\sin (\theta _W\right)\right){}^2\right)-s^2
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+s
\left(-6 s^2 m_W^2 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)+2 s m_W^4 \left(8 \left(\left.\sin (\theta
_W\right)\right){}^2-9\right)+12 m_W^6+s^3 \left(\left(\left.\sin
(\theta _W\right)\right){}^2-1\right)\right)\right)+m_e^2 \left(-2 s
m_H^2 m_W^2 \left(s^3 m_W^2 \left(-108 \left(\left.\sin (\theta
_W\right)\right){}^4+212 \left(\left.\sin (\theta
_W\right)\right){}^2-123\right)+2 s^2 m_W^4 \left(176 \left(\left.\sin
(\theta _W\right)\right){}^4-216 \left(\left.\sin (\theta
_W\right)\right){}^2-21\right)+8 s m_W^6 \left(184 \left(\left.\sin
(\theta _W\right)\right){}^4-34 \left(\left.\sin (\theta
_W\right)\right){}^2+3\right)+768 m_W^8 \left(\left.\sin (\theta
_W\right)\right){}^4+6 s^4 \left(5 \left(\left.\sin (\theta
_W\right)\right){}^4-12 \left(\left.\sin (\theta
_W\right)\right){}^2+7\right)\right)+m_H^4 \left(18 s^4 m_W^2 \left(2
\left(\left.\sin (\theta _W\right)\right){}^4-5 \left(\left.\sin (\theta
_W\right)\right){}^2+3\right)-2 s^3 m_W^4 \left(66 \left(\left.\sin
(\theta _W\right)\right){}^4-136 \left(\left.\sin (\theta
_W\right)\right){}^2+81\right)+4 s^2 m_W^6 \left(88 \left(\left.\sin
(\theta _W\right)\right){}^4-120 \left(\left.\sin (\theta
_W\right)\right){}^2+3\right)+16 s m_W^8 \left(\left.\sin (\theta
_W\right)\right){}^2 \left(92 \left(\left.\sin (\theta
_W\right)\right){}^2-17\right)+768 m_W^{10} \left(\left.\sin (\theta
_W\right)\right){}^4-3 s^5 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right){}^2\right)+s^2 m_W^2 \left(s^3 m_W^2
\left(-120 \left(\left.\sin (\theta _W\right)\right){}^4+248
\left(\left.\sin (\theta _W\right)\right){}^2-147\right)+4 s^2 m_W^4
\left(88 \left(\left.\sin (\theta _W\right)\right){}^4-114
\left(\left.\sin (\theta _W\right)\right){}^2-3\right)+4 s m_W^6
\left(368 \left(\left.\sin (\theta _W\right)\right){}^4-68
\left(\left.\sin (\theta _W\right)\right){}^2+3\right)+768 m_W^8
\left(\left.\sin (\theta _W\right)\right){}^4+12 s^4 \left(3
\left(\left.\sin (\theta _W\right)\right){}^4-7 \left(\left.\sin (\theta
_W\right)\right){}^2+4\right)\right)\right)+s m_W^4
\left(s-m_H^2\right){}^2 \left(4 s^2 m_W^2 \left(8 \left(\left.\sin
(\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta
_W\right)\right){}^2-15\right)+32 s m_W^4 \left(20 \left(\left.\sin
(\theta _W\right)\right){}^4-8 \left(\left.\sin (\theta
_W\right)\right){}^2+3\right)+96 m_W^6 \left(\left.\sin (\theta
_W\right)\right){}^2 \left(4 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)+s^3 \left(60 \left(\left.\sin (\theta
_W\right)\right){}^4-128 \left(\left.\sin (\theta
_W\right)\right){}^2+63\right)\right)\right)\right)/\left(96 s^4 m_W^4
\left(s-m_H^2\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^4
\left(m_W^2-s \left(\left.\cos (\theta
_W\right)\right){}^2\right){}^2\right)\right) − ( ( π α 2 s − 4 m e 2 s − 4 m W 2 ( 12 s m e 4 ( m W 2 + s ( ( sin ( θ W ) ) 2 − 1 ) ) ( m H 4 ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) + s m H 2 ( s m W 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) + m W 4 ( 2 − 8 ( sin ( θ W ) ) 2 ) − s 2 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( − 6 s 2 m W 2 ( ( sin ( θ W ) ) 2 − 1 ) + 2 s m W 4 ( 8 ( sin ( θ W ) ) 2 − 9 ) + 12 m W 6 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + m e 2 ( − 2 s m H 2 m W 2 ( s 3 m W 2 ( − 108 ( sin ( θ W ) ) 4 + 212 ( sin ( θ W ) ) 2 − 123 ) + 2 s 2 m W 4 ( 176 ( sin ( θ W ) ) 4 − 216 ( sin ( θ W ) ) 2 − 21 ) + 8 s m W 6 ( 184 ( sin ( θ W ) ) 4 − 34 ( sin ( θ W ) ) 2 + 3 ) + 768 m W 8 ( sin ( θ W ) ) 4 + 6 s 4 ( 5 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 + 7 ) ) + m H 4 ( 18 s 4 m W 2 ( 2 ( sin ( θ W ) ) 4 − 5 ( sin ( θ W ) ) 2 + 3 ) − 2 s 3 m W 4 ( 66 ( sin ( θ W ) ) 4 − 136 ( sin ( θ W ) ) 2 + 81 ) + 4 s 2 m W 6 ( 88 ( sin ( θ W ) ) 4 − 120 ( sin ( θ W ) ) 2 + 3 ) + 16 s m W 8 ( sin ( θ W ) ) 2 ( 92 ( sin ( θ W ) ) 2 − 17 ) + 768 m W 10 ( sin ( θ W ) ) 4 − 3 s 5 ( ( sin ( θ W ) ) 2 − 1 ) 2 ) + s 2 m W 2 ( s 3 m W 2 ( − 120 ( sin ( θ W ) ) 4 + 248 ( sin ( θ W ) ) 2 − 147 ) + 4 s 2 m W 4 ( 88 ( sin ( θ W ) ) 4 − 114 ( sin ( θ W ) ) 2 − 3 ) + 4 s m W 6 ( 368 ( sin ( θ W ) ) 4 − 68 ( sin ( θ W ) ) 2 + 3 ) + 768 m W 8 ( sin ( θ W ) ) 4 + 12 s 4 ( 3 ( sin ( θ W ) ) 4 − 7 ( sin ( θ W ) ) 2 + 4 ) ) ) + s m W 4 ( s − m H 2 ) 2 ( 4 s 2 m W 2 ( 8 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 − 15 ) + 32 s m W 4 ( 20 ( sin ( θ W ) ) 4 − 8 ( sin ( θ W ) ) 2 + 3 ) + 96 m W 6 ( sin ( θ W ) ) 2 ( 4 ( sin ( θ W ) ) 2 − 1 ) + s 3 ( 60 ( sin ( θ W ) ) 4 − 128 ( sin ( θ W ) ) 2 + 63 ) ) ) ) / ( 96 s 4 m W 4 ( s − m H 2 ) 2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 ) )
xsectionPart2 = logPart /. Log [ t + a_ : 0 ] :> Log [ (tUpper + a )/ (tLower + a )] // Simplify
( π α 2 log ( − ( s − 4 m e 2 ) ( s − 4 m W 2 ) + 2 m e 2 + 2 m W 2 − s ( s − 4 m e 2 ) ( s − 4 m W 2 ) − 2 m e 2 − 2 m W 2 + s ) ( 2 m e 6 ( m H 2 ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) + s m W 2 ( s − 2 m W 2 ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) + m e 4 ( m H 2 ( s 2 m W 2 ( 4 ( sin ( θ W ) ) 2 − 5 ) + 2 s m W 4 ( 6 ( sin ( θ W ) ) 2 + 5 ) + 16 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 11 − 10 ( sin ( θ W ) ) 2 ) − 4 s m W 4 ( 2 ( sin ( θ W ) ) 2 + 5 ) + m W 6 ( 4 − 16 ( sin ( θ W ) ) 2 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m e 2 m W 2 ( m H 2 ( s 2 m W 2 ( 5 ( sin ( θ W ) ) 2 − 6 ) + s m W 4 ( 7 ( sin ( θ W ) ) 2 − 2 ) − 2 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 5 − 4 ( sin ( θ W ) ) 2 ) + s m W 4 ( 5 − 9 ( sin ( θ W ) ) 2 ) + 2 m W 6 ( ( sin ( θ W ) ) 2 − 1 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m W 4 ( s − m H 2 ) ( s 2 m W 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) + 2 s m W 4 ( 5 ( sin ( θ W ) ) 2 − 2 ) + 4 m W 6 ( sin ( θ W ) ) 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) ) / ( 16 s 3 m W 4 ( s − m H 2 ) ( sin ( θ W ) ) 4 ( s ( cos ( θ W ) ) 2 − m W 2 ) ) \left(\pi \alpha ^2 \log
\left(-\frac{\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}+2
m_e^2+2 m_W^2-s}{\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}-2
m_e^2-2 m_W^2+s}\right) \left(2 m_e^6 \left(m_H^2 \left(\left(4
m_W^4+s^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2-s^2\right)+s m_W^2 \left(s-2 m_W^2\right) \left(2
\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+m_e^4
\left(m_H^2 \left(s^2 m_W^2 \left(4 \left(\left.\sin (\theta
_W\right)\right){}^2-5\right)+2 s m_W^4 \left(6 \left(\left.\sin (\theta
_W\right)\right){}^2+5\right)+16 m_W^6 \left(\left.\sin (\theta
_W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(11-10
\left(\left.\sin (\theta _W\right)\right){}^2\right)-4 s m_W^4 \left(2
\left(\left.\sin (\theta _W\right)\right){}^2+5\right)+m_W^6 \left(4-16
\left(\left.\sin (\theta _W\right)\right){}^2\right)+s^3
\left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)+4 m_e^2 m_W^2 \left(m_H^2
\left(s^2 m_W^2 \left(5 \left(\left.\sin (\theta
_W\right)\right){}^2-6\right)+s m_W^4 \left(7 \left(\left.\sin (\theta
_W\right)\right){}^2-2\right)-2 m_W^6 \left(\left.\sin (\theta
_W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(5-4
\left(\left.\sin (\theta _W\right)\right){}^2\right)+s m_W^4 \left(5-9
\left(\left.\sin (\theta _W\right)\right){}^2\right)+2 m_W^6
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)+s^3
\left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)+4 m_W^4 \left(s-m_H^2\right)
\left(s^2 m_W^2 \left(2 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)+2 s m_W^4 \left(5 \left(\left.\sin (\theta
_W\right)\right){}^2-2\right)+4 m_W^6 \left(\left.\sin (\theta
_W\right)\right){}^2+s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)\right)/\left(16 s^3 m_W^4
\left(s-m_H^2\right) \left(\left.\sin (\theta _W\right)\right){}^4
\left(s \left(\left.\cos (\theta
_W\right)\right){}^2-m_W^2\right)\right) ( π α 2 log ( − ( s − 4 m e 2 ) ( s − 4 m W 2 ) − 2 m e 2 − 2 m W 2 + s ( s − 4 m e 2 ) ( s − 4 m W 2 ) + 2 m e 2 + 2 m W 2 − s ) ( 2 m e 6 ( m H 2 ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) + s m W 2 ( s − 2 m W 2 ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) + m e 4 ( m H 2 ( s 2 m W 2 ( 4 ( sin ( θ W ) ) 2 − 5 ) + 2 s m W 4 ( 6 ( sin ( θ W ) ) 2 + 5 ) + 16 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 11 − 10 ( sin ( θ W ) ) 2 ) − 4 s m W 4 ( 2 ( sin ( θ W ) ) 2 + 5 ) + m W 6 ( 4 − 16 ( sin ( θ W ) ) 2 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m e 2 m W 2 ( m H 2 ( s 2 m W 2 ( 5 ( sin ( θ W ) ) 2 − 6 ) + s m W 4 ( 7 ( sin ( θ W ) ) 2 − 2 ) − 2 m W 6 ( sin ( θ W ) ) 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) + s ( s 2 m W 2 ( 5 − 4 ( sin ( θ W ) ) 2 ) + s m W 4 ( 5 − 9 ( sin ( θ W ) ) 2 ) + 2 m W 6 ( ( sin ( θ W ) ) 2 − 1 ) + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) + 4 m W 4 ( s − m H 2 ) ( s 2 m W 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) + 2 s m W 4 ( 5 ( sin ( θ W ) ) 2 − 2 ) + 4 m W 6 ( sin ( θ W ) ) 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) ) / ( 16 s 3 m W 4 ( s − m H 2 ) ( sin ( θ W ) ) 4 ( s ( cos ( θ W ) ) 2 − m W 2 ) )
crossSectionTotal = (xsectionPart1 + xsectionPart2)
( π log ( − 2 m e 2 + 2 m W 2 − s + ( s − 4 m e 2 ) ( s − 4 m W 2 ) − 2 m e 2 − 2 m W 2 + s + ( s − 4 m e 2 ) ( s − 4 m W 2 ) ) α 2 ( 2 ( ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) m H 2 + s m W 2 ( s − 2 m W 2 ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) m e 6 + ( ( 16 ( sin ( θ W ) ) 2 m W 6 + 2 s ( 6 ( sin ( θ W ) ) 2 + 5 ) m W 4 + s 2 ( 4 ( sin ( θ W ) ) 2 − 5 ) m W 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( ( 4 − 16 ( sin ( θ W ) ) 2 ) m W 6 − 4 s ( 2 ( sin ( θ W ) ) 2 + 5 ) m W 4 + s 2 ( 11 − 10 ( sin ( θ W ) ) 2 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) m e 4 + 4 m W 2 ( ( − 2 ( sin ( θ W ) ) 2 m W 6 + s ( 7 ( sin ( θ W ) ) 2 − 2 ) m W 4 + s 2 ( 5 ( sin ( θ W ) ) 2 − 6 ) m W 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( 2 ( ( sin ( θ W ) ) 2 − 1 ) m W 6 + s ( 5 − 9 ( sin ( θ W ) ) 2 ) m W 4 + s 2 ( 5 − 4 ( sin ( θ W ) ) 2 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) m e 2 + 4 ( s − m H 2 ) m W 4 ( 4 ( sin ( θ W ) ) 2 m W 6 + 2 s ( 5 ( sin ( θ W ) ) 2 − 2 ) m W 4 + s 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) ) / ( 16 s 3 ( s − m H 2 ) m W 4 ( s ( cos ( θ W ) ) 2 − m W 2 ) ( sin ( θ W ) ) 4 ) − ( π α 2 s − 4 m e 2 s − 4 m W 2 ( 12 s ( m W 2 + s ( ( sin ( θ W ) ) 2 − 1 ) ) ( ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) m H 4 + s ( ( 2 − 8 ( sin ( θ W ) ) 2 ) m W 4 + s ( 2 ( sin ( θ W ) ) 2 − 1 ) m W 2 − s 2 ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( 12 m W 6 + 2 s ( 8 ( sin ( θ W ) ) 2 − 9 ) m W 4 − 6 s 2 ( ( sin ( θ W ) ) 2 − 1 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) m e 4 + ( ( 768 ( sin ( θ W ) ) 4 m W 10 + 16 s ( sin ( θ W ) ) 2 ( 92 ( sin ( θ W ) ) 2 − 17 ) m W 8 + 4 s 2 ( 88 ( sin ( θ W ) ) 4 − 120 ( sin ( θ W ) ) 2 + 3 ) m W 6 − 2 s 3 ( 66 ( sin ( θ W ) ) 4 − 136 ( sin ( θ W ) ) 2 + 81 ) m W 4 + 18 s 4 ( 2 ( sin ( θ W ) ) 4 − 5 ( sin ( θ W ) ) 2 + 3 ) m W 2 − 3 s 5 ( ( sin ( θ W ) ) 2 − 1 ) 2 ) m H 4 − 2 s m W 2 ( 768 ( sin ( θ W ) ) 4 m W 8 + 8 s ( 184 ( sin ( θ W ) ) 4 − 34 ( sin ( θ W ) ) 2 + 3 ) m W 6 + 2 s 2 ( 176 ( sin ( θ W ) ) 4 − 216 ( sin ( θ W ) ) 2 − 21 ) m W 4 + s 3 ( − 108 ( sin ( θ W ) ) 4 + 212 ( sin ( θ W ) ) 2 − 123 ) m W 2 + 6 s 4 ( 5 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 + 7 ) ) m H 2 + s 2 m W 2 ( 768 ( sin ( θ W ) ) 4 m W 8 + 4 s ( 368 ( sin ( θ W ) ) 4 − 68 ( sin ( θ W ) ) 2 + 3 ) m W 6 + 4 s 2 ( 88 ( sin ( θ W ) ) 4 − 114 ( sin ( θ W ) ) 2 − 3 ) m W 4 + s 3 ( − 120 ( sin ( θ W ) ) 4 + 248 ( sin ( θ W ) ) 2 − 147 ) m W 2 + 12 s 4 ( 3 ( sin ( θ W ) ) 4 − 7 ( sin ( θ W ) ) 2 + 4 ) ) ) m e 2 + s ( s − m H 2 ) 2 m W 4 ( 96 ( sin ( θ W ) ) 2 ( 4 ( sin ( θ W ) ) 2 − 1 ) m W 6 + 32 s ( 20 ( sin ( θ W ) ) 4 − 8 ( sin ( θ W ) ) 2 + 3 ) m W 4 + 4 s 2 ( 8 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 − 15 ) m W 2 + s 3 ( 60 ( sin ( θ W ) ) 4 − 128 ( sin ( θ W ) ) 2 + 63 ) ) ) ) / ( 96 s 4 ( s − m H 2 ) 2 m W 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 ( sin ( θ W ) ) 4 ) \left(\pi \log \left(-\frac{2 m_e^2+2
m_W^2-s+\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}}{-2 m_e^2-2
m_W^2+s+\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}}\right)
\alpha ^2 \left(2 \left(\left(\left(4 m_W^4+s^2\right) \left(\left.\sin
(\theta _W\right)\right){}^2-s^2\right) m_H^2+s m_W^2 \left(s-2
m_W^2\right) \left(2 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right) m_e^6+\left(\left(16
\left(\left.\sin (\theta _W\right)\right){}^2 m_W^6+2 s \left(6
\left(\left.\sin (\theta _W\right)\right){}^2+5\right) m_W^4+s^2 \left(4
\left(\left.\sin (\theta _W\right)\right){}^2-5\right) m_W^2-s^3
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)
m_H^2+s \left(\left(4-16 \left(\left.\sin (\theta
_W\right)\right){}^2\right) m_W^6-4 s \left(2 \left(\left.\sin (\theta
_W\right)\right){}^2+5\right) m_W^4+s^2 \left(11-10 \left(\left.\sin
(\theta _W\right)\right){}^2\right) m_W^2+s^3 \left(\left(\left.\sin
(\theta _W\right)\right){}^2-1\right)\right)\right) m_e^4+4 m_W^2
\left(\left(-2 \left(\left.\sin (\theta _W\right)\right){}^2 m_W^6+s
\left(7 \left(\left.\sin (\theta _W\right)\right){}^2-2\right) m_W^4+s^2
\left(5 \left(\left.\sin (\theta _W\right)\right){}^2-6\right) m_W^2-s^3
\left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)
m_H^2+s \left(2 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right) m_W^6+s \left(5-9 \left(\left.\sin (\theta
_W\right)\right){}^2\right) m_W^4+s^2 \left(5-4 \left(\left.\sin (\theta
_W\right)\right){}^2\right) m_W^2+s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right) m_e^2+4 \left(s-m_H^2\right)
m_W^4 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2 m_W^6+2 s
\left(5 \left(\left.\sin (\theta _W\right)\right){}^2-2\right) m_W^4+s^2
\left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right) m_W^2+s^3
\left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right)\right)/\left(16 s^3
\left(s-m_H^2\right) m_W^4 \left(s \left(\left.\cos (\theta
_W\right)\right){}^2-m_W^2\right) \left(\left.\sin (\theta
_W\right)\right){}^4\right)-\left(\pi \alpha ^2 \sqrt{s-4 m_e^2}
\sqrt{s-4 m_W^2} \left(12 s \left(m_W^2+s \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right) \left(\left(\left(4
m_W^4+s^2\right) \left(\left.\sin (\theta
_W\right)\right){}^2-s^2\right) m_H^4+s \left(\left(2-8 \left(\left.\sin
(\theta _W\right)\right){}^2\right) m_W^4+s \left(2 \left(\left.\sin
(\theta _W\right)\right){}^2-1\right) m_W^2-s^2 \left(\left(\left.\sin
(\theta _W\right)\right){}^2-1\right)\right) m_H^2+s \left(12 m_W^6+2 s
\left(8 \left(\left.\sin (\theta _W\right)\right){}^2-9\right) m_W^4-6
s^2 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)
m_W^2+s^3 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right)\right)\right) m_e^4+\left(\left(768
\left(\left.\sin (\theta _W\right)\right){}^4 m_W^{10}+16 s
\left(\left.\sin (\theta _W\right)\right){}^2 \left(92 \left(\left.\sin
(\theta _W\right)\right){}^2-17\right) m_W^8+4 s^2 \left(88
\left(\left.\sin (\theta _W\right)\right){}^4-120 \left(\left.\sin
(\theta _W\right)\right){}^2+3\right) m_W^6-2 s^3 \left(66
\left(\left.\sin (\theta _W\right)\right){}^4-136 \left(\left.\sin
(\theta _W\right)\right){}^2+81\right) m_W^4+18 s^4 \left(2
\left(\left.\sin (\theta _W\right)\right){}^4-5 \left(\left.\sin (\theta
_W\right)\right){}^2+3\right) m_W^2-3 s^5 \left(\left(\left.\sin (\theta
_W\right)\right){}^2-1\right){}^2\right) m_H^4-2 s m_W^2 \left(768
\left(\left.\sin (\theta _W\right)\right){}^4 m_W^8+8 s \left(184
\left(\left.\sin (\theta _W\right)\right){}^4-34 \left(\left.\sin
(\theta _W\right)\right){}^2+3\right) m_W^6+2 s^2 \left(176
\left(\left.\sin (\theta _W\right)\right){}^4-216 \left(\left.\sin
(\theta _W\right)\right){}^2-21\right) m_W^4+s^3 \left(-108
\left(\left.\sin (\theta _W\right)\right){}^4+212 \left(\left.\sin
(\theta _W\right)\right){}^2-123\right) m_W^2+6 s^4 \left(5
\left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin
(\theta _W\right)\right){}^2+7\right)\right) m_H^2+s^2 m_W^2 \left(768
\left(\left.\sin (\theta _W\right)\right){}^4 m_W^8+4 s \left(368
\left(\left.\sin (\theta _W\right)\right){}^4-68 \left(\left.\sin
(\theta _W\right)\right){}^2+3\right) m_W^6+4 s^2 \left(88
\left(\left.\sin (\theta _W\right)\right){}^4-114 \left(\left.\sin
(\theta _W\right)\right){}^2-3\right) m_W^4+s^3 \left(-120
\left(\left.\sin (\theta _W\right)\right){}^4+248 \left(\left.\sin
(\theta _W\right)\right){}^2-147\right) m_W^2+12 s^4 \left(3
\left(\left.\sin (\theta _W\right)\right){}^4-7 \left(\left.\sin (\theta
_W\right)\right){}^2+4\right)\right)\right) m_e^2+s
\left(s-m_H^2\right){}^2 m_W^4 \left(96 \left(\left.\sin (\theta
_W\right)\right){}^2 \left(4 \left(\left.\sin (\theta
_W\right)\right){}^2-1\right) m_W^6+32 s \left(20 \left(\left.\sin
(\theta _W\right)\right){}^4-8 \left(\left.\sin (\theta
_W\right)\right){}^2+3\right) m_W^4+4 s^2 \left(8 \left(\left.\sin
(\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta
_W\right)\right){}^2-15\right) m_W^2+s^3 \left(60 \left(\left.\sin
(\theta _W\right)\right){}^4-128 \left(\left.\sin (\theta
_W\right)\right){}^2+63\right)\right)\right)\right)/\left(96 s^4
\left(s-m_H^2\right){}^2 m_W^4 \left(m_W^2-s \left(\left.\cos (\theta
_W\right)\right){}^2\right){}^2 \left(\left.\sin (\theta
_W\right)\right){}^4\right) ( π log ( − − 2 m e 2 − 2 m W 2 + s + ( s − 4 m e 2 ) ( s − 4 m W 2 ) 2 m e 2 + 2 m W 2 − s + ( s − 4 m e 2 ) ( s − 4 m W 2 ) ) α 2 ( 2 ( ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) m H 2 + s m W 2 ( s − 2 m W 2 ) ( 2 ( sin ( θ W ) ) 2 − 1 ) ) m e 6 + ( ( 16 ( sin ( θ W ) ) 2 m W 6 + 2 s ( 6 ( sin ( θ W ) ) 2 + 5 ) m W 4 + s 2 ( 4 ( sin ( θ W ) ) 2 − 5 ) m W 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( ( 4 − 16 ( sin ( θ W ) ) 2 ) m W 6 − 4 s ( 2 ( sin ( θ W ) ) 2 + 5 ) m W 4 + s 2 ( 11 − 10 ( sin ( θ W ) ) 2 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) m e 4 + 4 m W 2 ( ( − 2 ( sin ( θ W ) ) 2 m W 6 + s ( 7 ( sin ( θ W ) ) 2 − 2 ) m W 4 + s 2 ( 5 ( sin ( θ W ) ) 2 − 6 ) m W 2 − s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( 2 ( ( sin ( θ W ) ) 2 − 1 ) m W 6 + s ( 5 − 9 ( sin ( θ W ) ) 2 ) m W 4 + s 2 ( 5 − 4 ( sin ( θ W ) ) 2 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) m e 2 + 4 ( s − m H 2 ) m W 4 ( 4 ( sin ( θ W ) ) 2 m W 6 + 2 s ( 5 ( sin ( θ W ) ) 2 − 2 ) m W 4 + s 2 ( 2 ( sin ( θ W ) ) 2 − 1 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) ) / ( 16 s 3 ( s − m H 2 ) m W 4 ( s ( cos ( θ W ) ) 2 − m W 2 ) ( sin ( θ W ) ) 4 ) − ( π α 2 s − 4 m e 2 s − 4 m W 2 ( 12 s ( m W 2 + s ( ( sin ( θ W ) ) 2 − 1 ) ) ( ( ( 4 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − s 2 ) m H 4 + s ( ( 2 − 8 ( sin ( θ W ) ) 2 ) m W 4 + s ( 2 ( sin ( θ W ) ) 2 − 1 ) m W 2 − s 2 ( ( sin ( θ W ) ) 2 − 1 ) ) m H 2 + s ( 12 m W 6 + 2 s ( 8 ( sin ( θ W ) ) 2 − 9 ) m W 4 − 6 s 2 ( ( sin ( θ W ) ) 2 − 1 ) m W 2 + s 3 ( ( sin ( θ W ) ) 2 − 1 ) ) ) m e 4 + ( ( 768 ( sin ( θ W ) ) 4 m W 10 + 16 s ( sin ( θ W ) ) 2 ( 92 ( sin ( θ W ) ) 2 − 17 ) m W 8 + 4 s 2 ( 88 ( sin ( θ W ) ) 4 − 120 ( sin ( θ W ) ) 2 + 3 ) m W 6 − 2 s 3 ( 66 ( sin ( θ W ) ) 4 − 136 ( sin ( θ W ) ) 2 + 81 ) m W 4 + 18 s 4 ( 2 ( sin ( θ W ) ) 4 − 5 ( sin ( θ W ) ) 2 + 3 ) m W 2 − 3 s 5 ( ( sin ( θ W ) ) 2 − 1 ) 2 ) m H 4 − 2 s m W 2 ( 768 ( sin ( θ W ) ) 4 m W 8 + 8 s ( 184 ( sin ( θ W ) ) 4 − 34 ( sin ( θ W ) ) 2 + 3 ) m W 6 + 2 s 2 ( 176 ( sin ( θ W ) ) 4 − 216 ( sin ( θ W ) ) 2 − 21 ) m W 4 + s 3 ( − 108 ( sin ( θ W ) ) 4 + 212 ( sin ( θ W ) ) 2 − 123 ) m W 2 + 6 s 4 ( 5 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 + 7 ) ) m H 2 + s 2 m W 2 ( 768 ( sin ( θ W ) ) 4 m W 8 + 4 s ( 368 ( sin ( θ W ) ) 4 − 68 ( sin ( θ W ) ) 2 + 3 ) m W 6 + 4 s 2 ( 88 ( sin ( θ W ) ) 4 − 114 ( sin ( θ W ) ) 2 − 3 ) m W 4 + s 3 ( − 120 ( sin ( θ W ) ) 4 + 248 ( sin ( θ W ) ) 2 − 147 ) m W 2 + 12 s 4 ( 3 ( sin ( θ W ) ) 4 − 7 ( sin ( θ W ) ) 2 + 4 ) ) ) m e 2 + s ( s − m H 2 ) 2 m W 4 ( 96 ( sin ( θ W ) ) 2 ( 4 ( sin ( θ W ) ) 2 − 1 ) m W 6 + 32 s ( 20 ( sin ( θ W ) ) 4 − 8 ( sin ( θ W ) ) 2 + 3 ) m W 4 + 4 s 2 ( 8 ( sin ( θ W ) ) 4 − 12 ( sin ( θ W ) ) 2 − 15 ) m W 2 + s 3 ( 60 ( sin ( θ W ) ) 4 − 128 ( sin ( θ W ) ) 2 + 63 ) ) ) ) / ( 96 s 4 ( s − m H 2 ) 2 m W 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 ( sin ( θ W ) ) 4 )
Neglecting the electron mass produces a much simpler formula for the
total cross section
xsectionMasslessPart1 = (xsectionPart1 /. SMP[ "m_e" ] -> 0 ) //
Collect2[ #, SMP[ "sin_W" ], Factoring -> Factor2,
FCFactorOut -> Pi * SMP[ "alpha_fs" ] ^ 2 * Sqrt [ s - 4 SMP[ "m_W" ] ^ 2 ] /
(96 s ^ 2 Sqrt [ s ] * (- s SMP[ "cos_W" ] ^ 2 + SMP[ "m_W" ] ^ 2 )^ 2 SMP[ "sin_W" ] ^ 4 )] &
π α 2 s − 4 m W 2 ( 16 ( 3 m W 2 + 8 s ) ( 2 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − 3 s ( − 20 s m W 2 + 32 m W 4 + 21 s 2 ) − 4 ( 8 s 2 m W 2 + 160 s m W 4 + 96 m W 6 + 15 s 3 ) ( sin ( θ W ) ) 4 ) 96 s 5 / 2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 \frac{\pi \alpha ^2 \sqrt{s-4 m_W^2}
\left(16 \left(3 m_W^2+8 s\right) \left(2 m_W^4+s^2\right)
\left(\left.\sin (\theta _W\right)\right){}^2-3 s \left(-20 s m_W^2+32
m_W^4+21 s^2\right)-4 \left(8 s^2 m_W^2+160 s m_W^4+96 m_W^6+15
s^3\right) \left(\left.\sin (\theta _W\right)\right){}^4\right)}{96
s^{5/2} \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s
\left(\left.\cos (\theta _W\right)\right){}^2\right){}^2} 96 s 5/2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 π α 2 s − 4 m W 2 ( 16 ( 3 m W 2 + 8 s ) ( 2 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − 3 s ( − 20 s m W 2 + 32 m W 4 + 21 s 2 ) − 4 ( 8 s 2 m W 2 + 160 s m W 4 + 96 m W 6 + 15 s 3 ) ( sin ( θ W ) ) 4 )
xsectionMasslessPart2 = (xsectionPart2 /. SMP[ "m_e" ] -> 0 ) //
Collect2[ #, SMP[ "sin_W" ], Factoring -> Factor2,
FCFactorOut -> Log [ (s - 2 SMP[ "m_W" ] ^ 2 - Sqrt [ s (s - 4 SMP[ "m_W" ] ^ 2 )] )/ (s - 2 SMP[ "m_W" ] ^ 2 + Sqrt [ s (s - 4 SMP[ "m_W" ] ^ 2 )] )] * Pi * SMP[ "alpha_fs" ] ^ 2 /
((96 * s ^ 3 * (- s SMP[ "cos_W" ] ^ 2 + SMP[ "m_W" ] ^ 2 ) SMP[ "sin_W" ] ^ 4 ))] &
π α 2 log ( − s ( s − 4 m W 2 ) − 2 m W 2 + s s ( s − 4 m W 2 ) − 2 m W 2 + s ) ( 24 s ( s m W 2 + 4 m W 4 + s 2 ) − 24 ( 2 s 2 m W 2 + 10 s m W 4 + 4 m W 6 + s 3 ) ( sin ( θ W ) ) 2 ) 96 s 3 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) \frac{\pi \alpha ^2 \log
\left(\frac{-\sqrt{s \left(s-4 m_W^2\right)}-2 m_W^2+s}{\sqrt{s
\left(s-4 m_W^2\right)}-2 m_W^2+s}\right) \left(24 s \left(s m_W^2+4
m_W^4+s^2\right)-24 \left(2 s^2 m_W^2+10 s m_W^4+4 m_W^6+s^3\right)
\left(\left.\sin (\theta _W\right)\right){}^2\right)}{96 s^3
\left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s
\left(\left.\cos (\theta _W\right)\right){}^2\right)} 96 s 3 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) π α 2 log ( s ( s − 4 m W 2 ) − 2 m W 2 + s − s ( s − 4 m W 2 ) − 2 m W 2 + s ) ( 24 s ( s m W 2 + 4 m W 4 + s 2 ) − 24 ( 2 s 2 m W 2 + 10 s m W 4 + 4 m W 6 + s 3 ) ( sin ( θ W ) ) 2 )
crossSectionTotalMassless = xsectionMasslessPart1 + xsectionMasslessPart2
π α 2 log ( − s ( s − 4 m W 2 ) − 2 m W 2 + s s ( s − 4 m W 2 ) − 2 m W 2 + s ) ( 24 s ( s m W 2 + 4 m W 4 + s 2 ) − 24 ( 2 s 2 m W 2 + 10 s m W 4 + 4 m W 6 + s 3 ) ( sin ( θ W ) ) 2 ) 96 s 3 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) + π α 2 s − 4 m W 2 ( 16 ( 3 m W 2 + 8 s ) ( 2 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − 3 s ( − 20 s m W 2 + 32 m W 4 + 21 s 2 ) − 4 ( 8 s 2 m W 2 + 160 s m W 4 + 96 m W 6 + 15 s 3 ) ( sin ( θ W ) ) 4 ) 96 s 5 / 2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 \frac{\pi \alpha ^2 \log
\left(\frac{-\sqrt{s \left(s-4 m_W^2\right)}-2 m_W^2+s}{\sqrt{s
\left(s-4 m_W^2\right)}-2 m_W^2+s}\right) \left(24 s \left(s m_W^2+4
m_W^4+s^2\right)-24 \left(2 s^2 m_W^2+10 s m_W^4+4 m_W^6+s^3\right)
\left(\left.\sin (\theta _W\right)\right){}^2\right)}{96 s^3
\left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s
\left(\left.\cos (\theta _W\right)\right){}^2\right)}+\frac{\pi \alpha
^2 \sqrt{s-4 m_W^2} \left(16 \left(3 m_W^2+8 s\right) \left(2
m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-3 s
\left(-20 s m_W^2+32 m_W^4+21 s^2\right)-4 \left(8 s^2 m_W^2+160 s
m_W^4+96 m_W^6+15 s^3\right) \left(\left.\sin (\theta
_W\right)\right){}^4\right)}{96 s^{5/2} \left(\left.\sin (\theta
_W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta
_W\right)\right){}^2\right){}^2} 96 s 3 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) π α 2 log ( s ( s − 4 m W 2 ) − 2 m W 2 + s − s ( s − 4 m W 2 ) − 2 m W 2 + s ) ( 24 s ( s m W 2 + 4 m W 4 + s 2 ) − 24 ( 2 s 2 m W 2 + 10 s m W 4 + 4 m W 6 + s 3 ) ( sin ( θ W ) ) 2 ) + 96 s 5/2 ( sin ( θ W ) ) 4 ( m W 2 − s ( cos ( θ W ) ) 2 ) 2 π α 2 s − 4 m W 2 ( 16 ( 3 m W 2 + 8 s ) ( 2 m W 4 + s 2 ) ( sin ( θ W ) ) 2 − 3 s ( − 20 s m W 2 + 32 m W 4 + 21 s 2 ) − 4 ( 8 s 2 m W 2 + 160 s m W 4 + 96 m W 6 + 15 s 3 ) ( sin ( θ W ) ) 4 )
We can also plot the full cross-section (in pb) as a function of
Sqrt[s] (in GeV)
crossSectionTotalPlot =
3.89 * 10 ^ 8 * crossSectionTotal /. { SMP[ "m_e" ] -> 0.51 * 10 ^ (- 3 ), SMP[ "m_H" ] -> 125.0 , SMP[ "m_W" ] -> 80.4 , SMP[ "sin_W" ] -> Sqrt [ 0.231 ],
SMP[ "cos_W" ] -> Sqrt [ 1.0 - 0.231 ], SMP[ "alpha_fs" ] -> 1 / 137 , s -> sqrtS^ 2 } // Simplify
( sqrtS 2 − 25856.6 sqrtS 2 − 1.0404000000000002 ˋ * ∧ -6 ( − 787392. sqrtS 12 + 3.42456 × 1 0 10 sqrtS 10 − 5.57252 × 1 0 14 sqrtS 8 + 4.35633 × 1 0 18 sqrtS 6 − 1.58771 × 1 0 22 sqrtS 4 + 2.38882 × 1 0 24 sqrtS 2 − 1.51082 × 1 0 19 ) + ( − 305052. sqrtS 12 + 1.07176 × 1 0 10 sqrtS 10 − 1.27913 × 1 0 14 sqrtS 8 + 1.13672 × 1 0 18 sqrtS 6 − 1.52926 × 1 0 22 sqrtS 4 + 1.07667 × 1 0 26 sqrtS 2 − 2.03181 × 1 0 29 ) sqrtS 2 log ( sqrtS 2 − 1. sqrtS 4 − 25856.6 sqrtS 2 + 0.0269012 − 12928.3 sqrtS 2 + sqrtS 4 − 25856.6 sqrtS 2 + 0.0269012 − 12928.3 ) ) / ( sqrtS 8 ( 1. sqrtS 4 − 24030.9 sqrtS 2 + 1.31343 × 1 0 8 ) 2 ) \left(\sqrt{\text{sqrtS}^2-25856.6}
\sqrt{\text{sqrtS}^2-\text{1.0404000000000002$\grave{
}$*${}^{\wedge}$-6}} \left(-787392. \;\text{sqrtS}^{12}+3.42456\times
10^{10} \;\text{sqrtS}^{10}-5.57252\times 10^{14}
\;\text{sqrtS}^8+4.35633\times 10^{18} \;\text{sqrtS}^6-1.58771\times
10^{22} \;\text{sqrtS}^4+2.38882\times 10^{24}
\;\text{sqrtS}^2-1.51082\times 10^{19}\right)+\left(-305052.
\;\text{sqrtS}^{12}+1.07176\times 10^{10}
\;\text{sqrtS}^{10}-1.27913\times 10^{14} \;\text{sqrtS}^8+1.13672\times
10^{18} \;\text{sqrtS}^6-1.52926\times 10^{22}
\;\text{sqrtS}^4+1.07667\times 10^{26} \;\text{sqrtS}^2-2.03181\times
10^{29}\right) \;\text{sqrtS}^2 \log \left(\frac{\text{sqrtS}^2-1.
\sqrt{\text{sqrtS}^4-25856.6
\;\text{sqrtS}^2+0.0269012}-12928.3}{\text{sqrtS}^2+\sqrt{\text{sqrtS}^4-25856.6
\;\text{sqrtS}^2+0.0269012}-12928.3}\right)\right)/\left(\text{sqrtS}^8
\left(1. \;\text{sqrtS}^4-24030.9 \;\text{sqrtS}^2+1.31343\times
10^8\right)^2\right) ( sqrtS 2 − 25856.6 sqrtS 2 − 1.0404000000000002 ˋ * ∧ -6 ( − 787392. sqrtS 12 + 3.42456 × 1 0 10 sqrtS 10 − 5.57252 × 1 0 14 sqrtS 8 + 4.35633 × 1 0 18 sqrtS 6 − 1.58771 × 1 0 22 sqrtS 4 + 2.38882 × 1 0 24 sqrtS 2 − 1.51082 × 1 0 19 ) + ( − 305052. sqrtS 12 + 1.07176 × 1 0 10 sqrtS 10 − 1.27913 × 1 0 14 sqrtS 8 + 1.13672 × 1 0 18 sqrtS 6 − 1.52926 × 1 0 22 sqrtS 4 + 1.07667 × 1 0 26 sqrtS 2 − 2.03181 × 1 0 29 ) sqrtS 2 log ( sqrtS 2 + sqrtS 4 − 25856.6 sqrtS 2 + 0.0269012 − 12928.3 sqrtS 2 − 1. sqrtS 4 − 25856.6 sqrtS 2 + 0.0269012 − 12928.3 ) ) / ( sqrtS 8 ( 1. sqrtS 4 − 24030.9 sqrtS 2 + 1.31343 × 1 0 8 ) 2 )
The plot can be compared to the one in Physics at LEP2: Vol. 1
(Altarelli:1996gh), page 93, Fig. 2
If [ $FrontEnd = != Null ,
Plot [ crossSectionTotalPlot, { sqrtS, 162 , 205 }]
]
Check the final results
knownResults = {
(Pi * Log [ (- 2 + s - Sqrt [ (- 4 + s )* s ] )/ (- 2 + s + Sqrt [ (- 4 + s )* s ] )] * SMP[ "alpha_fs" ] ^ 2 * (24 * s * (4 + s + s ^ 2 ) -
24 * (4 + 10 * s + 2 * s ^ 2 + s ^ 3 )* SMP[ "sin_W" ] ^ 2 ))/ (96 * s ^ 3 * (1 - s * SMP[ "cos_W" ] ^ 2 )* SMP[ "sin_W" ] ^ 4 ) +
(Pi * Sqrt [ - 4 + s ] * SMP[ "alpha_fs" ] ^ 2 * (- 3 * s * (32 - 20 * s + 21 * s ^ 2 ) + 16 * (3 + 8 * s )* (2 + s ^ 2 )* SMP[ "sin_W" ] ^ 2 -
4 * (96 + 160 * s + 8 * s ^ 2 + 15 * s ^ 3 )* SMP[ "sin_W" ] ^ 4 ))/ (96 * s ^ (5 / 2 )* (1 - s * SMP[ "cos_W" ] ^ 2 )^ 2 * SMP[ "sin_W" ] ^ 4 )
} ;
FCCompareResults[{ crossSectionTotalMassless /. SMP[ "m_W" ] -> 1 },
knownResults,
Text -> { " \t Compare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.4:" ,
"CORRECT." , "WRONG!" }, Interrupt -> { Hold [ Quit [ 1 ]], Automatic }] ;
Print [ " \t CPU Time used: " , Round [ N [ TimeUsed [], 3 ], 0.001 ], " s." ] ;
\ tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.4: CORRECT. \text{$\backslash $tCompare to Grozin,
Using REDUCE in High Energy Physics, Chapter 5.4:}
\;\text{CORRECT.} \tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.4: CORRECT.
\ tCPU Time used: 63.736 s. \text{$\backslash $tCPU Time used:
}63.736\text{ s.} \tCPU Time used: 63.736 s.