EW manual (development version)

Load FeynCalc and the necessary add-ons or other packages

description = "Anel El -> W W, EW, total cross section, tree";
If[ $FrontEnd === Null, 
    $FeynCalcStartupMessages = False; 
    Print[description]; 
  ];
If[ $Notebooks === False, 
    $FeynCalcStartupMessages = False 
  ];
$LoadAddOns = {"FeynArts"};
<< FeynCalc`
$FAVerbose = 0; 
 
FCCheckVersion[9, 3, 1];

FeynCalc   10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online  documentation  , check out the wiki   or visit the forum.\text{FeynCalc }\;\text{10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the }\underline{\text{online} \;\text{documentation}}\;\text{, check out the }\underline{\text{wiki}}\;\text{ or visit the }\underline{\text{forum}.}

Please check our FAQ   for answers to some common FeynCalc questions and have a look at the supplied examples.\text{Please check our }\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc questions and have a look at the supplied }\underline{\text{examples}.}

If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.\text{If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.}

Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!\text{Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!}

FeynArts   3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual   or visit www.feynarts.de.\text{FeynArts }\;\text{3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the }\underline{\text{manual}}\;\text{ or visit }\underline{\text{www}.\text{feynarts}.\text{de}.}

If you use FeynArts in your research, please cite\text{If you use FeynArts in your research, please cite}

  T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260\text{ $\bullet $ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260}

Generate Feynman diagrams

Nicer typesetting

MakeBoxes[p1, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(1\)]\)";
MakeBoxes[p2, TraditionalForm] := "\!\(\*SubscriptBox[\(p\), \(2\)]\)";
MakeBoxes[k1, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(1\)]\)";
MakeBoxes[k2, TraditionalForm] := "\!\(\*SubscriptBox[\(k\), \(2\)]\)";
diags = InsertFields[CreateTopologies[0, 2 -> 2], {F[2, {1}], -F[2, {1}]} -> 
            {V[3], -V[3]}, InsertionLevel -> {Classes}]; 
 
Paint[diags, ColumnsXRows -> {2, 1}, Numbering -> Simple, 
    SheetHeader -> None, ImageSize -> {512, 256}];

07fbwm3tf6lg3

1oma4ekmtc4x9

Obtain the amplitude

amp[0] = FCFAConvert[CreateFeynAmp[diags], IncomingMomenta -> {p1, p2}, 
    OutgoingMomenta -> {k1, k2}, UndoChiralSplittings -> True, ChangeDimension -> 4, 
    TransversePolarizationVectors -> {k1, k2}, 
    List -> True, SMP -> True, Contract -> True, FinalSubstitutions -> {SMP["e"] -> Sqrt[4 Pi SMP["alpha_fs"]], 
        SMP["m_Z"] -> SMP["m_W"]/SMP["cos_W"]}];

Let us separately mark the Higgs contribution separately

amp[1] = {markHiggs amp[0][[1]], amp[0][[2]], amp[0][[3]], amp[0][[4]]};
amp[2] = Total[amp[1]] // DiracSimplify;

Fix the kinematics

FCClearScalarProducts[];
SetMandelstam[s, t, u, p1, p2, -k1, -k2, SMP["m_e"], SMP["m_e"], SMP["m_W"], SMP["m_W"]];

Square the amplitude

ampSquared[0] = (amp[2] (ComplexConjugate[amp[2]])) // 
            FeynAmpDenominatorExplicit // FermionSpinSum[#, ExtraFactor -> 1/2^2] & // 
        DiracSimplify // DoPolarizationSums[#, k1] & // DoPolarizationSums[#, k2] & // 
    TrickMandelstam[#, {s, t, u, 2 SMP["m_e"]^2 + 2 SMP["m_W"]^2}] &;
ampSquaredFull[0] = (ampSquared[0] /. markHiggs -> 1 /. u -> 2 SMP["m_e"]^2 + 2 SMP["m_W"]^2 - s - t) // 
    Simplify;
ampSquaredFull[1] = Simplify[Numerator[ampSquaredFull[0]] /. 
        SMP["cos_W"] -> Sqrt[1 - SMP["sin_W"]^2]]/Denominator[ampSquaredFull[0]]

((π2α2((2s2(smH2)2me8+4s(smH2)((((s4t(sin(θW))2)mW2)2st((sin(θW))21))mH2+s((4t(sin(θW))2+s+2t)mW2+st(2(sin(θW))21)))me6+2(((96t2(sin(θW))416st(sin(θW))23s2)mW42st(16t(sin(θW))4+4(2s3t)(sin(θW))2+3s)mW2+s2t(8t(sin(θW))412t(sin(θW))2+s+6t))mH42s((96t2(sin(θW))416t(s+3t)(sin(θW))2+s(2t3s))mW4st(32t(sin(θW))4+8(2s3t)(sin(θW))2+9s+4t)mW2+s2t(8t(sin(θW))48t(sin(θW))2+s+4t))mH2+s2((96t2(sin(θW))416t(s+6t)(sin(θW))23s2+24t2+4st)mW44st(8t(sin(θW))4+(4s6t)(sin(θW))2+3s+4t)mW2+s2t(8t(sin(θW))44t(sin(θW))2+s+4t)))me4(4(2(48t2(sin(θW))42st(sin(θW))2+s2)mW6+2t(sin(θW))2(s(5s4t)24(s2t)t(sin(θW))2)mW4+st(8(s4t)t(sin(θW))4+12t2(sin(θW))2s(2s+3t))mW2+s2t2(4(s+2t)(sin(θW))42(s+3t)(sin(θW))2+s+2t))mH44s(4(48t2(sin(θW))42(s6t)t(sin(θW))2+s(s+t))mW6+2t(48(s2t)t(sin(θW))4+2(5s210ts12t2)(sin(θW))2s(s+t))mW4st(16(s4t)t(sin(θW))4+4(s6t)t(sin(θW))2+4s2+2t2+5st)mW2+s2t2(8(s+2t)(sin(θW))42(s+4t)(sin(θW))2+s+3t))mH2+s2(8(48t2(sin(θW))42(s12t)t(sin(θW))2+s(s+2t))mW6+4t(48(s2t)t(sin(θW))4+2(5s216ts24t2)(sin(θW))2+s(t2s))mW44st(8(s4t)t(sin(θW))4+4(s3t)t(sin(θW))2+2s2+2t2+3st)mW2+s2t2(16(s+2t)(sin(θW))48t(sin(θW))2+s+4t)))me2+2(smH2)2(4(24t2(sin(θW))4+4st(sin(θW))2+s2)mW88t(4t(s+6t)(sin(θW))4+s(3t4s)(sin(θW))2+s2)mW6+t(8t(17s2+20ts+12t2)(sin(θW))420s2t(sin(θW))2+s2(4s+5t))mW42st2(8(2s2+3ts+2t2)(sin(θW))44(2s2+2ts+t2)(sin(θW))2+s(2s+t))mW2+s2t3(s+t)(8(sin(θW))44(sin(θW))2+1)))mW42s(1(sin(θW))2)(2s2(smH2)2me8+2s(smH2)(((4t(sin(θW))22s+2t)mW2+st(32(sin(θW))2))mH2+s(2(2t(sin(θW))2+s+t)mW2+st(2(sin(θW))21)))me6+2(((s(2t3s)8(s3t)t(sin(θW))2)mW4+st((4t8s)(sin(θW))25s+6t)mW2+s2t(4t(sin(θW))2+s+3t))mH4+s(2(3s2+8t(sin(θW))2s4ts+6t2)mW4+4st((4s2t)(sin(θW))2+4st)mW2+s2t(4t(sin(θW))22s3t))mH2+s2((3s2+6ts+12t28t(s+3t)(sin(θW))2)mW4st((8s4t)(sin(θW))2+11s+10t)mW2+s2t(s+2t)))me4+(2(4(s(s+t)t(s+12t)(sin(θW))2)mW6+2t((5s216ts+24t2)(sin(θW))2+s(5s+t))mW4st(4s2+ts6t2+4t(ts)(sin(θW))2)mW2+s2t2(2t(sin(θW))2+s+t))mH4+s(8(2s2+4ts+3t22t(s+6t)(sin(θW))2)mW6+4t(8s23ts6t2+2(5s222ts+12t2)(sin(θW))2)mW42st(8s2+ts8t24(s2t)t(sin(θW))2)mW2+s2t2(4s(sin(θW))2+s+2t))mH24s2(2(s2t(sin(θW))2s+3ts+3t2)mW6t(3s2+(28t5s)(sin(θW))2s+ts+6t2)mW4st(2s2+tst2+2t2(sin(θW))2)mW2+s2t2(s+t)(sin(θW))2))me2+4(smH2)2mW2(2(2t(s+3t)(sin(θW))2+s(s+t))mW6t((8s2+10ts+24t2)(sin(θW))2+3st)mW4+2t(s3+2t(3s2+5ts+3t2)(sin(θW))2)mW2st3(s+t)(2(sin(θW))21)))mW2+(2s2(smH2)2me8+4s(smH2)((st(s2t)mW2)mH2+s2mW2)me6+2(((3s2+4ts+12t2)mW44s(s2t)tmW2+s2t(s+t))mH42s2(3(s2t)mW4+t(4t7s)mW2+s2t)mH2+s2((3s2+8ts+12t2)mW42st(5s+4t)mW2+s2t(s+t)))me4+(((8s(s+2t)mW6+4t(10s2+13ts+12t2)mW44st(2s2+ts2t2)mW2+s3t2)mH4)8smW2(2(s2+3ts+3t2)mW43t(3s2+3ts+2t2)mW2+st(2s2+tst2))mH2+8s2mW2(((s2+4ts+6t2)mW4)4st(s+t)mW2+s2t(s+t)))me2+8(smH2)2mW4((s2+2ts+3t2)mW4+2t(s22ts3t2)mW2+t(s3+3ts2+5t2s+3t3)))(ss(sin(θW))2)2))/(2s2t2(smH2)2mW4(mW2s(cos(θW))2)2(sin(θW))4))-\left(\left(\pi ^2 \alpha ^2 \left(\left(2 s^2 \left(s-m_H^2\right){}^2 m_e^8+4 s \left(s-m_H^2\right) \left(\left(-\left(\left(s-4 t \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2\right)-2 s t \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) m_H^2+s \left(\left(-4 t \left(\left.\sin (\theta _W\right)\right){}^2+s+2 t\right) m_W^2+s t \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right) m_e^6+2 \left(\left(\left(96 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-16 s t \left(\left.\sin (\theta _W\right)\right){}^2-3 s^2\right) m_W^4-2 s t \left(16 t \left(\left.\sin (\theta _W\right)\right){}^4+4 (2 s-3 t) \left(\left.\sin (\theta _W\right)\right){}^2+3 s\right) m_W^2+s^2 t \left(8 t \left(\left.\sin (\theta _W\right)\right){}^4-12 t \left(\left.\sin (\theta _W\right)\right){}^2+s+6 t\right)\right) m_H^4-2 s \left(\left(96 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-16 t (s+3 t) \left(\left.\sin (\theta _W\right)\right){}^2+s (2 t-3 s)\right) m_W^4-s t \left(32 t \left(\left.\sin (\theta _W\right)\right){}^4+8 (2 s-3 t) \left(\left.\sin (\theta _W\right)\right){}^2+9 s+4 t\right) m_W^2+s^2 t \left(8 t \left(\left.\sin (\theta _W\right)\right){}^4-8 t \left(\left.\sin (\theta _W\right)\right){}^2+s+4 t\right)\right) m_H^2+s^2 \left(\left(96 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-16 t (s+6 t) \left(\left.\sin (\theta _W\right)\right){}^2-3 s^2+24 t^2+4 s t\right) m_W^4-4 s t \left(8 t \left(\left.\sin (\theta _W\right)\right){}^4+(4 s-6 t) \left(\left.\sin (\theta _W\right)\right){}^2+3 s+4 t\right) m_W^2+s^2 t \left(8 t \left(\left.\sin (\theta _W\right)\right){}^4-4 t \left(\left.\sin (\theta _W\right)\right){}^2+s+4 t\right)\right)\right) m_e^4-\left(4 \left(2 \left(-48 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-2 s t \left(\left.\sin (\theta _W\right)\right){}^2+s^2\right) m_W^6+2 t \left(\left.\sin (\theta _W\right)\right){}^2 \left(s (5 s-4 t)-24 (s-2 t) t \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4+s t \left(8 (s-4 t) t \left(\left.\sin (\theta _W\right)\right){}^4+12 t^2 \left(\left.\sin (\theta _W\right)\right){}^2-s (2 s+3 t)\right) m_W^2+s^2 t^2 \left(4 (s+2 t) \left(\left.\sin (\theta _W\right)\right){}^4-2 (s+3 t) \left(\left.\sin (\theta _W\right)\right){}^2+s+2 t\right)\right) m_H^4-4 s \left(4 \left(-48 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-2 (s-6 t) t \left(\left.\sin (\theta _W\right)\right){}^2+s (s+t)\right) m_W^6+2 t \left(-48 (s-2 t) t \left(\left.\sin (\theta _W\right)\right){}^4+2 \left(5 s^2-10 t s-12 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s (s+t)\right) m_W^4-s t \left(-16 (s-4 t) t \left(\left.\sin (\theta _W\right)\right){}^4+4 (s-6 t) t \left(\left.\sin (\theta _W\right)\right){}^2+4 s^2+2 t^2+5 s t\right) m_W^2+s^2 t^2 \left(8 (s+2 t) \left(\left.\sin (\theta _W\right)\right){}^4-2 (s+4 t) \left(\left.\sin (\theta _W\right)\right){}^2+s+3 t\right)\right) m_H^2+s^2 \left(8 \left(-48 t^2 \left(\left.\sin (\theta _W\right)\right){}^4-2 (s-12 t) t \left(\left.\sin (\theta _W\right)\right){}^2+s (s+2 t)\right) m_W^6+4 t \left(-48 (s-2 t) t \left(\left.\sin (\theta _W\right)\right){}^4+2 \left(5 s^2-16 t s-24 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2+s (t-2 s)\right) m_W^4-4 s t \left(-8 (s-4 t) t \left(\left.\sin (\theta _W\right)\right){}^4+4 (s-3 t) t \left(\left.\sin (\theta _W\right)\right){}^2+2 s^2+2 t^2+3 s t\right) m_W^2+s^2 t^2 \left(16 (s+2 t) \left(\left.\sin (\theta _W\right)\right){}^4-8 t \left(\left.\sin (\theta _W\right)\right){}^2+s+4 t\right)\right)\right) m_e^2+2 \left(s-m_H^2\right){}^2 \left(4 \left(24 t^2 \left(\left.\sin (\theta _W\right)\right){}^4+4 s t \left(\left.\sin (\theta _W\right)\right){}^2+s^2\right) m_W^8-8 t \left(4 t (s+6 t) \left(\left.\sin (\theta _W\right)\right){}^4+s (3 t-4 s) \left(\left.\sin (\theta _W\right)\right){}^2+s^2\right) m_W^6+t \left(8 t \left(17 s^2+20 t s+12 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^4-20 s^2 t \left(\left.\sin (\theta _W\right)\right){}^2+s^2 (4 s+5 t)\right) m_W^4-2 s t^2 \left(8 \left(2 s^2+3 t s+2 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^4-4 \left(2 s^2+2 t s+t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2+s (2 s+t)\right) m_W^2+s^2 t^3 (s+t) \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-4 \left(\left.\sin (\theta _W\right)\right){}^2+1\right)\right)\right) m_W^4-2 s \left(1-\left(\left.\sin (\theta _W\right)\right){}^2\right) \left(2 s^2 \left(s-m_H^2\right){}^2 m_e^8+2 s \left(s-m_H^2\right) \left(\left(\left(4 t \left(\left.\sin (\theta _W\right)\right){}^2-2 s+2 t\right) m_W^2+s t \left(3-2 \left(\left.\sin (\theta _W\right)\right){}^2\right)\right) m_H^2+s \left(2 \left(-2 t \left(\left.\sin (\theta _W\right)\right){}^2+s+t\right) m_W^2+s t \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right) m_e^6+2 \left(\left(\left(s (2 t-3 s)-8 (s-3 t) t \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4+s t \left((4 t-8 s) \left(\left.\sin (\theta _W\right)\right){}^2-5 s+6 t\right) m_W^2+s^2 t \left(-4 t \left(\left.\sin (\theta _W\right)\right){}^2+s+3 t\right)\right) m_H^4+s \left(2 \left(3 s^2+8 t \left(\left.\sin (\theta _W\right)\right){}^2 s-4 t s+6 t^2\right) m_W^4+4 s t \left((4 s-2 t) \left(\left.\sin (\theta _W\right)\right){}^2+4 s-t\right) m_W^2+s^2 t \left(4 t \left(\left.\sin (\theta _W\right)\right){}^2-2 s-3 t\right)\right) m_H^2+s^2 \left(\left(-3 s^2+6 t s+12 t^2-8 t (s+3 t) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4-s t \left((8 s-4 t) \left(\left.\sin (\theta _W\right)\right){}^2+11 s+10 t\right) m_W^2+s^2 t (s+2 t)\right)\right) m_e^4+\left(-2 \left(4 \left(s (s+t)-t (s+12 t) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^6+2 t \left(\left(5 s^2-16 t s+24 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2+s (5 s+t)\right) m_W^4-s t \left(4 s^2+t s-6 t^2+4 t (t-s) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^2 t^2 \left(-2 t \left(\left.\sin (\theta _W\right)\right){}^2+s+t\right)\right) m_H^4+s \left(8 \left(2 s^2+4 t s+3 t^2-2 t (s+6 t) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^6+4 t \left(8 s^2-3 t s-6 t^2+2 \left(5 s^2-22 t s+12 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4-2 s t \left(8 s^2+t s-8 t^2-4 (s-2 t) t \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^2 t^2 \left(4 s \left(\left.\sin (\theta _W\right)\right){}^2+s+2 t\right)\right) m_H^2-4 s^2 \left(2 \left(s^2-t \left(\left.\sin (\theta _W\right)\right){}^2 s+3 t s+3 t^2\right) m_W^6-t \left(-3 s^2+(28 t-5 s) \left(\left.\sin (\theta _W\right)\right){}^2 s+t s+6 t^2\right) m_W^4-s t \left(2 s^2+t s-t^2+2 t^2 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^2 t^2 (s+t) \left(\left.\sin (\theta _W\right)\right){}^2\right)\right) m_e^2+4 \left(s-m_H^2\right){}^2 m_W^2 \left(2 \left(2 t (s+3 t) \left(\left.\sin (\theta _W\right)\right){}^2+s (s+t)\right) m_W^6-t \left(\left(-8 s^2+10 t s+24 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2+3 s t\right) m_W^4+2 t \left(s^3+2 t \left(3 s^2+5 t s+3 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2-s t^3 (s+t) \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right) m_W^2+\left(2 s^2 \left(s-m_H^2\right){}^2 m_e^8+4 s \left(s-m_H^2\right) \left(\left(s t-(s-2 t) m_W^2\right) m_H^2+s^2 m_W^2\right) m_e^6+2 \left(\left(\left(-3 s^2+4 t s+12 t^2\right) m_W^4-4 s (s-2 t) t m_W^2+s^2 t (s+t)\right) m_H^4-2 s^2 \left(-3 (s-2 t) m_W^4+t (4 t-7 s) m_W^2+s^2 t\right) m_H^2+s^2 \left(\left(-3 s^2+8 t s+12 t^2\right) m_W^4-2 s t (5 s+4 t) m_W^2+s^2 t (s+t)\right)\right) m_e^4+\left(-\left(\left(8 s (s+2 t) m_W^6+4 t \left(10 s^2+13 t s+12 t^2\right) m_W^4-4 s t \left(2 s^2+t s-2 t^2\right) m_W^2+s^3 t^2\right) m_H^4\right)-8 s m_W^2 \left(-2 \left(s^2+3 t s+3 t^2\right) m_W^4-3 t \left(3 s^2+3 t s+2 t^2\right) m_W^2+s t \left(2 s^2+t s-t^2\right)\right) m_H^2+8 s^2 m_W^2 \left(-\left(\left(s^2+4 t s+6 t^2\right) m_W^4\right)-4 s t (s+t) m_W^2+s^2 t (s+t)\right)\right) m_e^2+8 \left(s-m_H^2\right){}^2 m_W^4 \left(\left(s^2+2 t s+3 t^2\right) m_W^4+2 t \left(s^2-2 t s-3 t^2\right) m_W^2+t \left(s^3+3 t s^2+5 t^2 s+3 t^3\right)\right)\right) \left(s-s \left(\left.\sin (\theta _W\right)\right){}^2\right){}^2\right)\right)/\left(2 s^2 t^2 \left(s-m_H^2\right){}^2 m_W^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^4\right)\right)

The Higgs diagram is needed to cancel the divergence that goes like m_e*Sqrt[s] in the high energy limit. If we neglect the electron mass, then this particular diagram does not contribute.

ampSquaredMassless[0] = (ampSquared[0] /. SMP["m_e"] -> 0 /. u -> 2 SMP["m_W"]^2 - s - t) // 
    Simplify;
ampSquaredMassless[1] = Simplify[Numerator[ampSquaredMassless[0]] /. 
        SMP["cos_W"] -> Sqrt[1 - SMP["sin_W"]^2]]/Denominator[ampSquaredMassless[0]]

1s2t2(sin(θW))4(mW2s(cos(θW))2)2π2α2(2stmW2(4(s3+st2+2t3)(sin(θW))44(s3+2st2+5t3)(sin(θW))2st(10s+13t))+4mW8(s2+4st(sin(θW))2+24t2(sin(θW))4)+8mW6(2t(s2+st12t2)(sin(θW))4+s(s2+3st9t2)(sin(θW))2s2(s+2t))+mW4(s2(4s2+12st+29t2)8s(s3+6s2t+2st212t3)(sin(θW))2+4(s4+10s3t+27s2t2+16st3+24t4)(sin(θW))4)+s2t(s+t)(4(s2+2st+3t2)(sin(θW))48(s2+2st+2t2)(sin(θW))2+4s2+8st+9t2))-\frac{1}{s^2 t^2 \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right){}^2}\pi ^2 \alpha ^2 \left(2 s t m_W^2 \left(4 \left(s^3+s t^2+2 t^3\right) \left(\left.\sin (\theta _W\right)\right){}^4-4 \left(s^3+2 s t^2+5 t^3\right) \left(\left.\sin (\theta _W\right)\right){}^2-s t (10 s+13 t)\right)+4 m_W^8 \left(s^2+4 s t \left(\left.\sin (\theta _W\right)\right){}^2+24 t^2 \left(\left.\sin (\theta _W\right)\right){}^4\right)+8 m_W^6 \left(2 t \left(s^2+s t-12 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^4+s \left(s^2+3 s t-9 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s^2 (s+2 t)\right)+m_W^4 \left(s^2 \left(4 s^2+12 s t+29 t^2\right)-8 s \left(s^3+6 s^2 t+2 s t^2-12 t^3\right) \left(\left.\sin (\theta _W\right)\right){}^2+4 \left(s^4+10 s^3 t+27 s^2 t^2+16 s t^3+24 t^4\right) \left(\left.\sin (\theta _W\right)\right){}^4\right)+s^2 t (s+t) \left(4 \left(s^2+2 s t+3 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^4-8 \left(s^2+2 s t+2 t^2\right) \left(\left.\sin (\theta _W\right)\right){}^2+4 s^2+8 s t+9 t^2\right)\right)

Total cross section

prefac = 1/(16 Pi s^2);
integral = prefac*Integrate[ampSquaredFull[1], t];
logFreePart = SelectFree2[integral, Log];
logPartRaw = SelectNotFree2[integral, Log] // Simplify;
tUpper = -1/2 (s - 2 SMP["m_W"]^2 - 2 SMP["m_e"]^2 - Sqrt[(s - 4 SMP["m_e"]^2) (s - 4 SMP["m_W"]^2)]);
tLower = -1/2 (s - 2 SMP["m_W"]^2 - 2 SMP["m_e"]^2 + Sqrt[(s - 4 SMP["m_e"]^2) (s - 4 SMP["m_W"]^2)]);
logPart = Numerator[logPartRaw]/(Denominator[logPartRaw] /. (-s SMP["cos_W"]^2 + SMP["m_W"]^2)^2 -> 
        (-s SMP["cos_W"]^2 + SMP["m_W"]^2) (-s (1 - SMP["sin_W"]^2) + SMP["m_W"]^2)) // Simplify

(πα2log(t)(2me6(mH2((4mW4+s2)(sin(θW))2s2)+smW2(s2mW2)(2(sin(θW))21))+me4(mH2(s2mW2(4(sin(θW))25)+2smW4(6(sin(θW))2+5)+16mW6(sin(θW))2s3((sin(θW))21))+s(s2mW2(1110(sin(θW))2)4smW4(2(sin(θW))2+5)+mW6(416(sin(θW))2)+s3((sin(θW))21)))+4me2mW2(mH2(s2mW2(5(sin(θW))26)+smW4(7(sin(θW))22)2mW6(sin(θW))2s3((sin(θW))21))+s(s2mW2(54(sin(θW))2)+smW4(59(sin(θW))2)+2mW6((sin(θW))21)+s3((sin(θW))21)))+4mW4(smH2)(s2mW2(2(sin(θW))21)+2smW4(5(sin(θW))22)+4mW6(sin(θW))2+s3((sin(θW))21))))/(16s3mW4(smH2)(sin(θW))4(s(cos(θW))2mW2))\left(\pi \alpha ^2 \log (t) \left(2 m_e^6 \left(m_H^2 \left(\left(4 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s^2\right)+s m_W^2 \left(s-2 m_W^2\right) \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+m_e^4 \left(m_H^2 \left(s^2 m_W^2 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2-5\right)+2 s m_W^4 \left(6 \left(\left.\sin (\theta _W\right)\right){}^2+5\right)+16 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(11-10 \left(\left.\sin (\theta _W\right)\right){}^2\right)-4 s m_W^4 \left(2 \left(\left.\sin (\theta _W\right)\right){}^2+5\right)+m_W^6 \left(4-16 \left(\left.\sin (\theta _W\right)\right){}^2\right)+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)+4 m_e^2 m_W^2 \left(m_H^2 \left(s^2 m_W^2 \left(5 \left(\left.\sin (\theta _W\right)\right){}^2-6\right)+s m_W^4 \left(7 \left(\left.\sin (\theta _W\right)\right){}^2-2\right)-2 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(5-4 \left(\left.\sin (\theta _W\right)\right){}^2\right)+s m_W^4 \left(5-9 \left(\left.\sin (\theta _W\right)\right){}^2\right)+2 m_W^6 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)+4 m_W^4 \left(s-m_H^2\right) \left(s^2 m_W^2 \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)+2 s m_W^4 \left(5 \left(\left.\sin (\theta _W\right)\right){}^2-2\right)+4 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)\right)/\left(16 s^3 m_W^4 \left(s-m_H^2\right) \left(\left.\sin (\theta _W\right)\right){}^4 \left(s \left(\left.\cos (\theta _W\right)\right){}^2-m_W^2\right)\right)

xsectionPart1 = ((logFreePart /. {t -> tUpper}) - (logFreePart /. {t ->tLower})) // 
        Simplify // PowerExpand // Simplify

((πα2s4me2s4mW2(12sme4(mW2+s((sin(θW))21))(mH4((4mW4+s2)(sin(θW))2s2)+smH2(smW2(2(sin(θW))21)+mW4(28(sin(θW))2)s2((sin(θW))21))+s(6s2mW2((sin(θW))21)+2smW4(8(sin(θW))29)+12mW6+s3((sin(θW))21)))+me2(2smH2mW2(s3mW2(108(sin(θW))4+212(sin(θW))2123)+2s2mW4(176(sin(θW))4216(sin(θW))221)+8smW6(184(sin(θW))434(sin(θW))2+3)+768mW8(sin(θW))4+6s4(5(sin(θW))412(sin(θW))2+7))+mH4(18s4mW2(2(sin(θW))45(sin(θW))2+3)2s3mW4(66(sin(θW))4136(sin(θW))2+81)+4s2mW6(88(sin(θW))4120(sin(θW))2+3)+16smW8(sin(θW))2(92(sin(θW))217)+768mW10(sin(θW))43s5((sin(θW))21)2)+s2mW2(s3mW2(120(sin(θW))4+248(sin(θW))2147)+4s2mW4(88(sin(θW))4114(sin(θW))23)+4smW6(368(sin(θW))468(sin(θW))2+3)+768mW8(sin(θW))4+12s4(3(sin(θW))47(sin(θW))2+4)))+smW4(smH2)2(4s2mW2(8(sin(θW))412(sin(θW))215)+32smW4(20(sin(θW))48(sin(θW))2+3)+96mW6(sin(θW))2(4(sin(θW))21)+s3(60(sin(θW))4128(sin(θW))2+63))))/(96s4mW4(smH2)2(sin(θW))4(mW2s(cos(θW))2)2))-\left(\left(\pi \alpha ^2 \sqrt{s-4 m_e^2} \sqrt{s-4 m_W^2} \left(12 s m_e^4 \left(m_W^2+s \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) \left(m_H^4 \left(\left(4 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s^2\right)+s m_H^2 \left(s m_W^2 \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)+m_W^4 \left(2-8 \left(\left.\sin (\theta _W\right)\right){}^2\right)-s^2 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+s \left(-6 s^2 m_W^2 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)+2 s m_W^4 \left(8 \left(\left.\sin (\theta _W\right)\right){}^2-9\right)+12 m_W^6+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)+m_e^2 \left(-2 s m_H^2 m_W^2 \left(s^3 m_W^2 \left(-108 \left(\left.\sin (\theta _W\right)\right){}^4+212 \left(\left.\sin (\theta _W\right)\right){}^2-123\right)+2 s^2 m_W^4 \left(176 \left(\left.\sin (\theta _W\right)\right){}^4-216 \left(\left.\sin (\theta _W\right)\right){}^2-21\right)+8 s m_W^6 \left(184 \left(\left.\sin (\theta _W\right)\right){}^4-34 \left(\left.\sin (\theta _W\right)\right){}^2+3\right)+768 m_W^8 \left(\left.\sin (\theta _W\right)\right){}^4+6 s^4 \left(5 \left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta _W\right)\right){}^2+7\right)\right)+m_H^4 \left(18 s^4 m_W^2 \left(2 \left(\left.\sin (\theta _W\right)\right){}^4-5 \left(\left.\sin (\theta _W\right)\right){}^2+3\right)-2 s^3 m_W^4 \left(66 \left(\left.\sin (\theta _W\right)\right){}^4-136 \left(\left.\sin (\theta _W\right)\right){}^2+81\right)+4 s^2 m_W^6 \left(88 \left(\left.\sin (\theta _W\right)\right){}^4-120 \left(\left.\sin (\theta _W\right)\right){}^2+3\right)+16 s m_W^8 \left(\left.\sin (\theta _W\right)\right){}^2 \left(92 \left(\left.\sin (\theta _W\right)\right){}^2-17\right)+768 m_W^{10} \left(\left.\sin (\theta _W\right)\right){}^4-3 s^5 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right){}^2\right)+s^2 m_W^2 \left(s^3 m_W^2 \left(-120 \left(\left.\sin (\theta _W\right)\right){}^4+248 \left(\left.\sin (\theta _W\right)\right){}^2-147\right)+4 s^2 m_W^4 \left(88 \left(\left.\sin (\theta _W\right)\right){}^4-114 \left(\left.\sin (\theta _W\right)\right){}^2-3\right)+4 s m_W^6 \left(368 \left(\left.\sin (\theta _W\right)\right){}^4-68 \left(\left.\sin (\theta _W\right)\right){}^2+3\right)+768 m_W^8 \left(\left.\sin (\theta _W\right)\right){}^4+12 s^4 \left(3 \left(\left.\sin (\theta _W\right)\right){}^4-7 \left(\left.\sin (\theta _W\right)\right){}^2+4\right)\right)\right)+s m_W^4 \left(s-m_H^2\right){}^2 \left(4 s^2 m_W^2 \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta _W\right)\right){}^2-15\right)+32 s m_W^4 \left(20 \left(\left.\sin (\theta _W\right)\right){}^4-8 \left(\left.\sin (\theta _W\right)\right){}^2+3\right)+96 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)+s^3 \left(60 \left(\left.\sin (\theta _W\right)\right){}^4-128 \left(\left.\sin (\theta _W\right)\right){}^2+63\right)\right)\right)\right)/\left(96 s^4 m_W^4 \left(s-m_H^2\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right){}^2\right)\right)

xsectionPart2 = logPart /. Log[t + a_ : 0] :> Log[(tUpper + a)/(tLower + a)] // Simplify

(πα2log((s4me2)(s4mW2)+2me2+2mW2s(s4me2)(s4mW2)2me22mW2+s)(2me6(mH2((4mW4+s2)(sin(θW))2s2)+smW2(s2mW2)(2(sin(θW))21))+me4(mH2(s2mW2(4(sin(θW))25)+2smW4(6(sin(θW))2+5)+16mW6(sin(θW))2s3((sin(θW))21))+s(s2mW2(1110(sin(θW))2)4smW4(2(sin(θW))2+5)+mW6(416(sin(θW))2)+s3((sin(θW))21)))+4me2mW2(mH2(s2mW2(5(sin(θW))26)+smW4(7(sin(θW))22)2mW6(sin(θW))2s3((sin(θW))21))+s(s2mW2(54(sin(θW))2)+smW4(59(sin(θW))2)+2mW6((sin(θW))21)+s3((sin(θW))21)))+4mW4(smH2)(s2mW2(2(sin(θW))21)+2smW4(5(sin(θW))22)+4mW6(sin(θW))2+s3((sin(θW))21))))/(16s3mW4(smH2)(sin(θW))4(s(cos(θW))2mW2))\left(\pi \alpha ^2 \log \left(-\frac{\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}+2 m_e^2+2 m_W^2-s}{\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}-2 m_e^2-2 m_W^2+s}\right) \left(2 m_e^6 \left(m_H^2 \left(\left(4 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s^2\right)+s m_W^2 \left(s-2 m_W^2\right) \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+m_e^4 \left(m_H^2 \left(s^2 m_W^2 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2-5\right)+2 s m_W^4 \left(6 \left(\left.\sin (\theta _W\right)\right){}^2+5\right)+16 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(11-10 \left(\left.\sin (\theta _W\right)\right){}^2\right)-4 s m_W^4 \left(2 \left(\left.\sin (\theta _W\right)\right){}^2+5\right)+m_W^6 \left(4-16 \left(\left.\sin (\theta _W\right)\right){}^2\right)+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)+4 m_e^2 m_W^2 \left(m_H^2 \left(s^2 m_W^2 \left(5 \left(\left.\sin (\theta _W\right)\right){}^2-6\right)+s m_W^4 \left(7 \left(\left.\sin (\theta _W\right)\right){}^2-2\right)-2 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2-s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)+s \left(s^2 m_W^2 \left(5-4 \left(\left.\sin (\theta _W\right)\right){}^2\right)+s m_W^4 \left(5-9 \left(\left.\sin (\theta _W\right)\right){}^2\right)+2 m_W^6 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)+4 m_W^4 \left(s-m_H^2\right) \left(s^2 m_W^2 \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)+2 s m_W^4 \left(5 \left(\left.\sin (\theta _W\right)\right){}^2-2\right)+4 m_W^6 \left(\left.\sin (\theta _W\right)\right){}^2+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)\right)/\left(16 s^3 m_W^4 \left(s-m_H^2\right) \left(\left.\sin (\theta _W\right)\right){}^4 \left(s \left(\left.\cos (\theta _W\right)\right){}^2-m_W^2\right)\right)

crossSectionTotal = (xsectionPart1 + xsectionPart2)

(πlog(2me2+2mW2s+(s4me2)(s4mW2)2me22mW2+s+(s4me2)(s4mW2))α2(2(((4mW4+s2)(sin(θW))2s2)mH2+smW2(s2mW2)(2(sin(θW))21))me6+((16(sin(θW))2mW6+2s(6(sin(θW))2+5)mW4+s2(4(sin(θW))25)mW2s3((sin(θW))21))mH2+s((416(sin(θW))2)mW64s(2(sin(θW))2+5)mW4+s2(1110(sin(θW))2)mW2+s3((sin(θW))21)))me4+4mW2((2(sin(θW))2mW6+s(7(sin(θW))22)mW4+s2(5(sin(θW))26)mW2s3((sin(θW))21))mH2+s(2((sin(θW))21)mW6+s(59(sin(θW))2)mW4+s2(54(sin(θW))2)mW2+s3((sin(θW))21)))me2+4(smH2)mW4(4(sin(θW))2mW6+2s(5(sin(θW))22)mW4+s2(2(sin(θW))21)mW2+s3((sin(θW))21))))/(16s3(smH2)mW4(s(cos(θW))2mW2)(sin(θW))4)(πα2s4me2s4mW2(12s(mW2+s((sin(θW))21))(((4mW4+s2)(sin(θW))2s2)mH4+s((28(sin(θW))2)mW4+s(2(sin(θW))21)mW2s2((sin(θW))21))mH2+s(12mW6+2s(8(sin(θW))29)mW46s2((sin(θW))21)mW2+s3((sin(θW))21)))me4+((768(sin(θW))4mW10+16s(sin(θW))2(92(sin(θW))217)mW8+4s2(88(sin(θW))4120(sin(θW))2+3)mW62s3(66(sin(θW))4136(sin(θW))2+81)mW4+18s4(2(sin(θW))45(sin(θW))2+3)mW23s5((sin(θW))21)2)mH42smW2(768(sin(θW))4mW8+8s(184(sin(θW))434(sin(θW))2+3)mW6+2s2(176(sin(θW))4216(sin(θW))221)mW4+s3(108(sin(θW))4+212(sin(θW))2123)mW2+6s4(5(sin(θW))412(sin(θW))2+7))mH2+s2mW2(768(sin(θW))4mW8+4s(368(sin(θW))468(sin(θW))2+3)mW6+4s2(88(sin(θW))4114(sin(θW))23)mW4+s3(120(sin(θW))4+248(sin(θW))2147)mW2+12s4(3(sin(θW))47(sin(θW))2+4)))me2+s(smH2)2mW4(96(sin(θW))2(4(sin(θW))21)mW6+32s(20(sin(θW))48(sin(θW))2+3)mW4+4s2(8(sin(θW))412(sin(θW))215)mW2+s3(60(sin(θW))4128(sin(θW))2+63))))/(96s4(smH2)2mW4(mW2s(cos(θW))2)2(sin(θW))4)\left(\pi \log \left(-\frac{2 m_e^2+2 m_W^2-s+\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}}{-2 m_e^2-2 m_W^2+s+\sqrt{\left(s-4 m_e^2\right) \left(s-4 m_W^2\right)}}\right) \alpha ^2 \left(2 \left(\left(\left(4 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s^2\right) m_H^2+s m_W^2 \left(s-2 m_W^2\right) \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) m_e^6+\left(\left(16 \left(\left.\sin (\theta _W\right)\right){}^2 m_W^6+2 s \left(6 \left(\left.\sin (\theta _W\right)\right){}^2+5\right) m_W^4+s^2 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2-5\right) m_W^2-s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) m_H^2+s \left(\left(4-16 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^6-4 s \left(2 \left(\left.\sin (\theta _W\right)\right){}^2+5\right) m_W^4+s^2 \left(11-10 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right) m_e^4+4 m_W^2 \left(\left(-2 \left(\left.\sin (\theta _W\right)\right){}^2 m_W^6+s \left(7 \left(\left.\sin (\theta _W\right)\right){}^2-2\right) m_W^4+s^2 \left(5 \left(\left.\sin (\theta _W\right)\right){}^2-6\right) m_W^2-s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) m_H^2+s \left(2 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right) m_W^6+s \left(5-9 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4+s^2 \left(5-4 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^2+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right) m_e^2+4 \left(s-m_H^2\right) m_W^4 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2 m_W^6+2 s \left(5 \left(\left.\sin (\theta _W\right)\right){}^2-2\right) m_W^4+s^2 \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right) m_W^2+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right)\right)/\left(16 s^3 \left(s-m_H^2\right) m_W^4 \left(s \left(\left.\cos (\theta _W\right)\right){}^2-m_W^2\right) \left(\left.\sin (\theta _W\right)\right){}^4\right)-\left(\pi \alpha ^2 \sqrt{s-4 m_e^2} \sqrt{s-4 m_W^2} \left(12 s \left(m_W^2+s \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) \left(\left(\left(4 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-s^2\right) m_H^4+s \left(\left(2-8 \left(\left.\sin (\theta _W\right)\right){}^2\right) m_W^4+s \left(2 \left(\left.\sin (\theta _W\right)\right){}^2-1\right) m_W^2-s^2 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right) m_H^2+s \left(12 m_W^6+2 s \left(8 \left(\left.\sin (\theta _W\right)\right){}^2-9\right) m_W^4-6 s^2 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right) m_W^2+s^3 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right)\right)\right) m_e^4+\left(\left(768 \left(\left.\sin (\theta _W\right)\right){}^4 m_W^{10}+16 s \left(\left.\sin (\theta _W\right)\right){}^2 \left(92 \left(\left.\sin (\theta _W\right)\right){}^2-17\right) m_W^8+4 s^2 \left(88 \left(\left.\sin (\theta _W\right)\right){}^4-120 \left(\left.\sin (\theta _W\right)\right){}^2+3\right) m_W^6-2 s^3 \left(66 \left(\left.\sin (\theta _W\right)\right){}^4-136 \left(\left.\sin (\theta _W\right)\right){}^2+81\right) m_W^4+18 s^4 \left(2 \left(\left.\sin (\theta _W\right)\right){}^4-5 \left(\left.\sin (\theta _W\right)\right){}^2+3\right) m_W^2-3 s^5 \left(\left(\left.\sin (\theta _W\right)\right){}^2-1\right){}^2\right) m_H^4-2 s m_W^2 \left(768 \left(\left.\sin (\theta _W\right)\right){}^4 m_W^8+8 s \left(184 \left(\left.\sin (\theta _W\right)\right){}^4-34 \left(\left.\sin (\theta _W\right)\right){}^2+3\right) m_W^6+2 s^2 \left(176 \left(\left.\sin (\theta _W\right)\right){}^4-216 \left(\left.\sin (\theta _W\right)\right){}^2-21\right) m_W^4+s^3 \left(-108 \left(\left.\sin (\theta _W\right)\right){}^4+212 \left(\left.\sin (\theta _W\right)\right){}^2-123\right) m_W^2+6 s^4 \left(5 \left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta _W\right)\right){}^2+7\right)\right) m_H^2+s^2 m_W^2 \left(768 \left(\left.\sin (\theta _W\right)\right){}^4 m_W^8+4 s \left(368 \left(\left.\sin (\theta _W\right)\right){}^4-68 \left(\left.\sin (\theta _W\right)\right){}^2+3\right) m_W^6+4 s^2 \left(88 \left(\left.\sin (\theta _W\right)\right){}^4-114 \left(\left.\sin (\theta _W\right)\right){}^2-3\right) m_W^4+s^3 \left(-120 \left(\left.\sin (\theta _W\right)\right){}^4+248 \left(\left.\sin (\theta _W\right)\right){}^2-147\right) m_W^2+12 s^4 \left(3 \left(\left.\sin (\theta _W\right)\right){}^4-7 \left(\left.\sin (\theta _W\right)\right){}^2+4\right)\right)\right) m_e^2+s \left(s-m_H^2\right){}^2 m_W^4 \left(96 \left(\left.\sin (\theta _W\right)\right){}^2 \left(4 \left(\left.\sin (\theta _W\right)\right){}^2-1\right) m_W^6+32 s \left(20 \left(\left.\sin (\theta _W\right)\right){}^4-8 \left(\left.\sin (\theta _W\right)\right){}^2+3\right) m_W^4+4 s^2 \left(8 \left(\left.\sin (\theta _W\right)\right){}^4-12 \left(\left.\sin (\theta _W\right)\right){}^2-15\right) m_W^2+s^3 \left(60 \left(\left.\sin (\theta _W\right)\right){}^4-128 \left(\left.\sin (\theta _W\right)\right){}^2+63\right)\right)\right)\right)/\left(96 s^4 \left(s-m_H^2\right){}^2 m_W^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right){}^2 \left(\left.\sin (\theta _W\right)\right){}^4\right)

Neglecting the electron mass produces a much simpler formula for the total cross section

xsectionMasslessPart1 = (xsectionPart1 /. SMP["m_e"] -> 0) // 
    Collect2[#, SMP["sin_W"], Factoring -> Factor2, 
        FCFactorOut -> Pi*SMP["alpha_fs"]^2*Sqrt[s - 4 SMP["m_W"]^2]/
        (96 s^2 Sqrt[s]*(-s SMP["cos_W"]^2 + SMP["m_W"]^2)^2 SMP["sin_W"]^4)] &

πα2s4mW2(16(3mW2+8s)(2mW4+s2)(sin(θW))23s(20smW2+32mW4+21s2)4(8s2mW2+160smW4+96mW6+15s3)(sin(θW))4)96s5/2(sin(θW))4(mW2s(cos(θW))2)2\frac{\pi \alpha ^2 \sqrt{s-4 m_W^2} \left(16 \left(3 m_W^2+8 s\right) \left(2 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-3 s \left(-20 s m_W^2+32 m_W^4+21 s^2\right)-4 \left(8 s^2 m_W^2+160 s m_W^4+96 m_W^6+15 s^3\right) \left(\left.\sin (\theta _W\right)\right){}^4\right)}{96 s^{5/2} \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right){}^2}

xsectionMasslessPart2 = (xsectionPart2 /. SMP["m_e"] -> 0) // 
    Collect2[#, SMP["sin_W"], Factoring -> Factor2, 
        FCFactorOut -> Log[(s - 2 SMP["m_W"]^2 - Sqrt[s (s - 4 SMP["m_W"]^2)])/(s - 2 SMP["m_W"]^2 + Sqrt[s (s - 4 SMP["m_W"]^2)])]*Pi*SMP["alpha_fs"]^2/
        ((96*s^3*(-s SMP["cos_W"]^2 + SMP["m_W"]^2) SMP["sin_W"]^4))] &

πα2log(s(s4mW2)2mW2+ss(s4mW2)2mW2+s)(24s(smW2+4mW4+s2)24(2s2mW2+10smW4+4mW6+s3)(sin(θW))2)96s3(sin(θW))4(mW2s(cos(θW))2)\frac{\pi \alpha ^2 \log \left(\frac{-\sqrt{s \left(s-4 m_W^2\right)}-2 m_W^2+s}{\sqrt{s \left(s-4 m_W^2\right)}-2 m_W^2+s}\right) \left(24 s \left(s m_W^2+4 m_W^4+s^2\right)-24 \left(2 s^2 m_W^2+10 s m_W^4+4 m_W^6+s^3\right) \left(\left.\sin (\theta _W\right)\right){}^2\right)}{96 s^3 \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right)}

crossSectionTotalMassless = xsectionMasslessPart1 + xsectionMasslessPart2

πα2log(s(s4mW2)2mW2+ss(s4mW2)2mW2+s)(24s(smW2+4mW4+s2)24(2s2mW2+10smW4+4mW6+s3)(sin(θW))2)96s3(sin(θW))4(mW2s(cos(θW))2)+πα2s4mW2(16(3mW2+8s)(2mW4+s2)(sin(θW))23s(20smW2+32mW4+21s2)4(8s2mW2+160smW4+96mW6+15s3)(sin(θW))4)96s5/2(sin(θW))4(mW2s(cos(θW))2)2\frac{\pi \alpha ^2 \log \left(\frac{-\sqrt{s \left(s-4 m_W^2\right)}-2 m_W^2+s}{\sqrt{s \left(s-4 m_W^2\right)}-2 m_W^2+s}\right) \left(24 s \left(s m_W^2+4 m_W^4+s^2\right)-24 \left(2 s^2 m_W^2+10 s m_W^4+4 m_W^6+s^3\right) \left(\left.\sin (\theta _W\right)\right){}^2\right)}{96 s^3 \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right)}+\frac{\pi \alpha ^2 \sqrt{s-4 m_W^2} \left(16 \left(3 m_W^2+8 s\right) \left(2 m_W^4+s^2\right) \left(\left.\sin (\theta _W\right)\right){}^2-3 s \left(-20 s m_W^2+32 m_W^4+21 s^2\right)-4 \left(8 s^2 m_W^2+160 s m_W^4+96 m_W^6+15 s^3\right) \left(\left.\sin (\theta _W\right)\right){}^4\right)}{96 s^{5/2} \left(\left.\sin (\theta _W\right)\right){}^4 \left(m_W^2-s \left(\left.\cos (\theta _W\right)\right){}^2\right){}^2}

We can also plot the full cross-section (in pb) as a function of Sqrt[s] (in GeV)

crossSectionTotalPlot = 
    3.89*10^8*crossSectionTotal /. {SMP["m_e"] -> 0.51*10^(-3), SMP["m_H"] -> 125.0, SMP["m_W"] -> 80.4, SMP["sin_W"] -> Sqrt[0.231], 
        SMP["cos_W"] -> Sqrt[1.0 - 0.231], SMP["alpha_fs"] -> 1/137, s -> sqrtS^2} // Simplify

(sqrtS225856.6sqrtS21.0404000000000002ˋ*-6(787392.  sqrtS12+3.42456×1010  sqrtS105.57252×1014  sqrtS8+4.35633×1018  sqrtS61.58771×1022  sqrtS4+2.38882×1024  sqrtS21.51082×1019)+(305052.  sqrtS12+1.07176×1010  sqrtS101.27913×1014  sqrtS8+1.13672×1018  sqrtS61.52926×1022  sqrtS4+1.07667×1026  sqrtS22.03181×1029)  sqrtS2log(sqrtS21.sqrtS425856.6  sqrtS2+0.026901212928.3sqrtS2+sqrtS425856.6  sqrtS2+0.026901212928.3))/(sqrtS8(1.  sqrtS424030.9  sqrtS2+1.31343×108)2)\left(\sqrt{\text{sqrtS}^2-25856.6} \sqrt{\text{sqrtS}^2-\text{1.0404000000000002$\grave{ }$*${}^{\wedge}$-6}} \left(-787392. \;\text{sqrtS}^{12}+3.42456\times 10^{10} \;\text{sqrtS}^{10}-5.57252\times 10^{14} \;\text{sqrtS}^8+4.35633\times 10^{18} \;\text{sqrtS}^6-1.58771\times 10^{22} \;\text{sqrtS}^4+2.38882\times 10^{24} \;\text{sqrtS}^2-1.51082\times 10^{19}\right)+\left(-305052. \;\text{sqrtS}^{12}+1.07176\times 10^{10} \;\text{sqrtS}^{10}-1.27913\times 10^{14} \;\text{sqrtS}^8+1.13672\times 10^{18} \;\text{sqrtS}^6-1.52926\times 10^{22} \;\text{sqrtS}^4+1.07667\times 10^{26} \;\text{sqrtS}^2-2.03181\times 10^{29}\right) \;\text{sqrtS}^2 \log \left(\frac{\text{sqrtS}^2-1. \sqrt{\text{sqrtS}^4-25856.6 \;\text{sqrtS}^2+0.0269012}-12928.3}{\text{sqrtS}^2+\sqrt{\text{sqrtS}^4-25856.6 \;\text{sqrtS}^2+0.0269012}-12928.3}\right)\right)/\left(\text{sqrtS}^8 \left(1. \;\text{sqrtS}^4-24030.9 \;\text{sqrtS}^2+1.31343\times 10^8\right)^2\right)

The plot can be compared to the one in Physics at LEP2: Vol. 1 (Altarelli:1996gh), page 93, Fig. 2

If[ $FrontEnd =!= Null, 
    Plot[crossSectionTotalPlot, {sqrtS, 162, 205}] 
 ]

1sxoza52dlo5q

Check the final results

knownResults = {
    (Pi*Log[(-2 + s - Sqrt[(-4 + s)*s])/(-2 + s + Sqrt[(-4 + s)*s])]*SMP["alpha_fs"]^2*(24*s*(4 + s + s^2) - 
                24*(4 + 10*s + 2*s^2 + s^3)*SMP["sin_W"]^2))/(96*s^3*(1 - s*SMP["cos_W"]^2)*SMP["sin_W"]^4) + 
     (Pi*Sqrt[-4 + s]*SMP["alpha_fs"]^2*(-3*s*(32 - 20*s + 21*s^2) + 16*(3 + 8*s)*(2 + s^2)*SMP["sin_W"]^2 - 
          4*(96 + 160*s + 8*s^2 + 15*s^3)*SMP["sin_W"]^4))/(96*s^(5/2)*(1 - s*SMP["cos_W"]^2)^2*SMP["sin_W"]^4) 
   };
FCCompareResults[{crossSectionTotalMassless /. SMP["m_W"] -> 1}, 
   knownResults, 
   Text -> {"\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.4:", 
     "CORRECT.", "WRONG!"}, Interrupt -> {Hold[Quit[1]], Automatic}];
Print["\tCPU Time used: ", Round[N[TimeUsed[], 3], 0.001], " s."];

\tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.4:  CORRECT.\text{$\backslash $tCompare to Grozin, Using REDUCE in High Energy Physics, Chapter 5.4:} \;\text{CORRECT.}

\tCPU Time used: 63.736 s.\text{$\backslash $tCPU Time used: }63.736\text{ s.}