Load
FeynCalc and the necessary add-ons or other packages
description = "H -> Gl Gl, EW, total decay rate, 1-loop" ;
If [ $FrontEnd === Null ,
$FeynCalcStartupMessages = False ;
Print [ description] ;
] ;
If [ $Notebooks === False ,
$FeynCalcStartupMessages = False
] ;
$LoadAddOns = { "FeynArts" } ;
<< FeynCalc`
$FAVerbose = 0 ;
FCCheckVersion[ 9 , 3 , 1 ] ;
FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation ‾ , check out the wiki ‾ or visit the forum . ‾ \text{FeynCalc }\;\text{10.0.0 (dev
version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the
}\underline{\text{online} \;\text{documentation}}\;\text{, check out the
}\underline{\text{wiki}}\;\text{ or visit the
}\underline{\text{forum}.} FeynCalc 10.0.0 (dev version, 2023-12-20 22:40:59 +01:00, dff3b835). For help, use the online documentation , check out the wiki or visit the forum .
Please check our FAQ ‾ for answers to some common FeynCalc questions and have a look at the supplied examples . ‾ \text{Please check our
}\underline{\text{FAQ}}\;\text{ for answers to some common FeynCalc
questions and have a look at the supplied
}\underline{\text{examples}.} Please check our FAQ for answers to some common FeynCalc questions and have a look at the supplied examples .
If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software. \text{If you use FeynCalc in your
research, please evaluate FeynCalcHowToCite[] to learn how to cite this
software.} If you use FeynCalc in your research, please evaluate FeynCalcHowToCite[] to learn how to cite this software.
Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package! \text{Please keep in mind that the proper
academic attribution of our work is crucial to ensure the future
development of this package!} Please keep in mind that the proper academic attribution of our work is crucial to ensure the future development of this package!
FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual ‾ or visit www . feynarts . de . ‾ \text{FeynArts }\;\text{3.11 (3 Aug 2020)
patched for use with FeynCalc, for documentation see the
}\underline{\text{manual}}\;\text{ or visit
}\underline{\text{www}.\text{feynarts}.\text{de}.} FeynArts 3.11 (3 Aug 2020) patched for use with FeynCalc, for documentation see the manual or visit www . feynarts . de .
If you use FeynArts in your research, please cite \text{If you use FeynArts in your
research, please cite} If you use FeynArts in your research, please cite
∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260 \text{ $\bullet $ T. Hahn, Comput. Phys.
Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260} ∙ T. Hahn, Comput. Phys. Commun., 140, 418-431, 2001, arXiv:hep-ph/0012260
Generate Feynman diagrams
Here we consider only the dominant contribution from the top quark
mass. However, it is trivial to include also loops from other quark
flavors.
diags = InsertFields[ CreateTopologies[ 1 , 1 -> 2 , ExcludeTopologies -> WFCorrections],
{ S [ 1 ]} -> { V [ 5 ], V [ 5 ]}, InsertionLevel -> { Particles}, Model -> "SMQCD" ,
ExcludeParticles -> { F [ 3 | 4 , { 1 | 2 }], F [ 4 , { 3 }]}] ;
Paint[ diags, ColumnsXRows -> { 2 , 1 }, Numbering -> Simple,
SheetHeader -> None , ImageSize -> { 512 , 256 }] ;
Obtain the amplitudes
amp[ 0 ] = FCFAConvert[ CreateFeynAmp[ diags, PreFactor -> - 1 ], IncomingMomenta -> { pH},
OutgoingMomenta -> { k1, k2}, LoopMomenta -> { q }, List -> False , Contract -> True ,
TransversePolarizationVectors -> { k1, k2}, ChangeDimension -> D ,
DropSumOver -> True , SMP -> True , UndoChiralSplittings -> True ] ;
amp[ 1 ] = amp[ 0 ] // FCTraceFactor // SUNSimplify
e g s 2 m t δ Glu2 Glu3 tr ( ( m t − γ ⋅ ( k1 + k2 − q ) ) . ( γ ⋅ ε ∗ ( k2 ) ) . ( m t − γ ⋅ ( k1 − q ) ) . ( γ ⋅ ε ∗ ( k1 ) ) . ( m t + γ ⋅ q ) ) 2 m W ( sin ( θ W ) ) ( q 2 − m t 2 ) . ( ( k1 − q ) 2 − m t 2 ) . ( ( k1 + k2 − q ) 2 − m t 2 ) \frac{\text{e} g_s^2 m_t \delta
^{\text{Glu2}\;\text{Glu3}} \;\text{tr}\left(\left(m_t-\gamma \cdot
(\text{k1}+\text{k2}-q)\right).\left(\gamma \cdot \varepsilon
^*(\text{k2})\right).\left(m_t-\gamma \cdot
(\text{k1}-q)\right).\left(\gamma \cdot \varepsilon
^*(\text{k1})\right).\left(m_t+\gamma \cdot q\right)\right)}{2 m_W
\left(\left.\sin (\theta _W\right)\right)
\left(q^2-m_t^2\right).\left((\text{k1}-q)^2-m_t^2\right).\left((\text{k1}+\text{k2}-q)^2-m_t^2\right)} 2 m W ( sin ( θ W ) ) ( q 2 − m t 2 ) . ( ( k1 − q ) 2 − m t 2 ) . ( ( k1 + k2 − q ) 2 − m t 2 ) e g s 2 m t δ Glu2 Glu3 tr ( ( m t − γ ⋅ ( k1 + k2 − q ) ) . ( γ ⋅ ε ∗ ( k2 ) ) . ( m t − γ ⋅ ( k1 − q ) ) . ( γ ⋅ ε ∗ ( k1 ) ) . ( m t + γ ⋅ q ) )
Fix the kinematics
FCClearScalarProducts[] ;
ScalarProduct[ k1, k1] = 0 ;
ScalarProduct[ k2, k2] = 0 ;
ScalarProduct[ pH, pH] = SMP[ "m_H" ] ^ 2 ;
ScalarProduct[ k1, k2] = (SMP[ "m_H" ] ^ 2 )/ 2 ;
Evaluate the amplitudes
Dirac trace and tensor decomposition
amp[ 2 ] = amp[ 1 ] // DiracSimplify // TID[ #, q , ToPaVe -> True ] &
2 i π 2 e g s 2 m t 2 δ Glu2 Glu3 B 0 ( m H 2 , m t 2 , m t 2 ) ( − ( ( 2 − D ) m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) ) − 2 D ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) − 2 m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) + 8 ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) ) ( 2 − D ) m H 2 m W ( sin ( θ W ) ) + i π 2 e g s 2 m t 2 δ Glu2 Glu3 ( ( 2 − D ) m H 2 + 8 m t 2 ) C 0 ( 0 , 0 , m H 2 , m t 2 , m t 2 , m t 2 ) ( 2 ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) − m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) ) ( 2 − D ) m H 2 m W ( sin ( θ W ) ) \frac{2 i \pi ^2 \;\text{e} g_s^2 m_t^2
\delta ^{\text{Glu2}\;\text{Glu3}}
\;\text{B}_0\left(m_H^2,m_t^2,m_t^2\right) \left(-\left((2-D) m_H^2
\left(\varepsilon ^*(\text{k1})\cdot \varepsilon
^*(\text{k2})\right)\right)-2 D \left(\text{k1}\cdot \varepsilon
^*(\text{k2})\right) \left(\text{k2}\cdot \varepsilon
^*(\text{k1})\right)-2 m_H^2 \left(\varepsilon ^*(\text{k1})\cdot
\varepsilon ^*(\text{k2})\right)+8 \left(\text{k1}\cdot \varepsilon
^*(\text{k2})\right) \left(\text{k2}\cdot \varepsilon
^*(\text{k1})\right)\right)}{(2-D) m_H^2 m_W \left(\left.\sin (\theta
_W\right)\right)}+\frac{i \pi ^2 \;\text{e} g_s^2 m_t^2 \delta
^{\text{Glu2}\;\text{Glu3}} \left((2-D) m_H^2+8 m_t^2\right)
\;\text{C}_0\left(0,0,m_H^2,m_t^2,m_t^2,m_t^2\right) \left(2
\left(\text{k1}\cdot \varepsilon ^*(\text{k2})\right)
\left(\text{k2}\cdot \varepsilon ^*(\text{k1})\right)-m_H^2
\left(\varepsilon ^*(\text{k1})\cdot \varepsilon
^*(\text{k2})\right)\right)}{(2-D) m_H^2 m_W \left(\left.\sin (\theta
_W\right)\right)} ( 2 − D ) m H 2 m W ( sin ( θ W ) ) 2 i π 2 e g s 2 m t 2 δ Glu2 Glu3 B 0 ( m H 2 , m t 2 , m t 2 ) ( − ( ( 2 − D ) m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) ) − 2 D ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) − 2 m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) + 8 ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) ) + ( 2 − D ) m H 2 m W ( sin ( θ W ) ) i π 2 e g s 2 m t 2 δ Glu2 Glu3 ( ( 2 − D ) m H 2 + 8 m t 2 ) C 0 ( 0 , 0 , m H 2 , m t 2 , m t 2 , m t 2 ) ( 2 ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) − m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) )
The explicit values for the PaVe functions B0 and C0 can be obtained
e.g. from H. Patel’s Package-X. Here we just insert the known
results.
loopInts = {
B0[ SMP[ "m_H" ] ^ 2 , SMP[ "m_t" ] ^ 2 , SMP[ "m_t" ] ^ 2 ] ->
1 / (16 * Epsilon* Pi ^ 4 ) - (- 2 * SMP[ "m_H" ] +
EulerGamma * SMP[ "m_H" ] - Log [ 4 * Pi ] * SMP[ "m_H" ] -
Log [ ScaleMu^ 2 / SMP[ "m_t" ] ^ 2 ] * SMP[ "m_H" ] -
Log [ (- SMP[ "m_H" ] ^ 2 + 2 * SMP[ "m_t" ] ^ 2 +
SMP[ "m_H" ] * Sqrt [ SMP[ "m_H" ] ^ 2 - 4 * SMP[ "m_t" ] ^ 2 ] )/
(2 * SMP[ "m_t" ] ^ 2 )] * Sqrt [ SMP[ "m_H" ] ^ 2 -
4 * SMP[ "m_t" ] ^ 2 ] )/ (16 * Pi ^ 4 * SMP[ "m_H" ] ),
C0[ 0 , 0 , SMP[ "m_H" ] ^ 2 , SMP[ "m_t" ] ^ 2 , SMP[ "m_t" ] ^ 2 , SMP[ "m_t" ] ^ 2 ] ->
Log [ (- SMP[ "m_H" ] ^ 2 + 2 * SMP[ "m_t" ] ^ 2 +
SMP[ "m_H" ] * Sqrt [ SMP[ "m_H" ] ^ 2 - 4 * SMP[ "m_t" ] ^ 2 ] )/
(2 * SMP[ "m_t" ] ^ 2 )] ^ 2 / (32 * Pi ^ 4 * SMP[ "m_H" ] ^ 2 )
} ;
$Assumptions = { SMP[ "m_H" ] > 0 , SMP[ "m_t" ] > 0 } ;
amp[ 3 ] = (amp[ 2 ] /. loopInts) // FCReplaceD[ #, D -> 4 - 2 Epsilon] & //
Series [ #, { Epsilon, 0 , 0 }] & // Normal
− i e g s 2 m t 2 δ Glu2 Glu3 ( m H 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 m t 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 m H 2 ) ( m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) − 2 ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) ) 32 π 2 m H 4 m W ( sin ( θ W ) ) -\frac{i \;\text{e} g_s^2 m_t^2 \delta
^{\text{Glu2}\;\text{Glu3}} \left(m_H^2 \log ^2\left(\frac{m_H
\sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)-4 m_t^2 \log
^2\left(\frac{m_H \sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)-4
m_H^2\right) \left(m_H^2 \left(\varepsilon ^*(\text{k1})\cdot
\varepsilon ^*(\text{k2})\right)-2 \left(\text{k1}\cdot \varepsilon
^*(\text{k2})\right) \left(\text{k2}\cdot \varepsilon
^*(\text{k1})\right)\right)}{32 \pi ^2 m_H^4 m_W \left(\left.\sin
(\theta _W\right)\right)} − 32 π 2 m H 4 m W ( sin ( θ W ) ) i e g s 2 m t 2 δ Glu2 Glu3 ( m H 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 m t 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 m H 2 ) ( m H 2 ( ε ∗ ( k1 ) ⋅ ε ∗ ( k2 ) ) − 2 ( k1 ⋅ ε ∗ ( k2 ) ) ( k2 ⋅ ε ∗ ( k1 ) ) )
As expected, the result is finite (i.e. contains no 1/Epsilon poles),
so that it is safe to switch back to 4 dimensions
amp[ 4 ] = amp[ 3 ] // ChangeDimension[ #, 4 ] &
− i e g s 2 m t 2 δ Glu2 Glu3 ( m H 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 m t 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 m H 2 ) ( m H 2 ( ε ˉ ∗ ( k1 ) ⋅ ε ˉ ∗ ( k2 ) ) − 2 ( k1 ‾ ⋅ ε ˉ ∗ ( k2 ) ) ( k2 ‾ ⋅ ε ˉ ∗ ( k1 ) ) ) 32 π 2 m H 4 m W ( sin ( θ W ) ) -\frac{i \;\text{e} g_s^2 m_t^2 \delta
^{\text{Glu2}\;\text{Glu3}} \left(m_H^2 \log ^2\left(\frac{m_H
\sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)-4 m_t^2 \log
^2\left(\frac{m_H \sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)-4
m_H^2\right) \left(m_H^2 \left(\bar{\varepsilon }^*(\text{k1})\cdot
\bar{\varepsilon }^*(\text{k2})\right)-2 \left(\overline{\text{k1}}\cdot
\bar{\varepsilon }^*(\text{k2})\right) \left(\overline{\text{k2}}\cdot
\bar{\varepsilon }^*(\text{k1})\right)\right)}{32 \pi ^2 m_H^4 m_W
\left(\left.\sin (\theta _W\right)\right)} − 32 π 2 m H 4 m W ( sin ( θ W ) ) i e g s 2 m t 2 δ Glu2 Glu3 ( m H 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 m t 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 m H 2 ) ( m H 2 ( ε ˉ ∗ ( k1 ) ⋅ ε ˉ ∗ ( k2 ) ) − 2 ( k1 ⋅ ε ˉ ∗ ( k2 ) ) ( k2 ⋅ ε ˉ ∗ ( k1 ) ) )
Square the amplitudes
ampSquared[ 0 ] = 1 / 2 (amp[ 4 ] (ComplexConjugate[ amp[ 4 ]] )) //
SUNSimplify[ #, SUNNToCACF -> False ] & //
DoPolarizationSums[ #, k1, k2] & // DoPolarizationSums[ #, k2, k1] & //
Simplify
e 2 ( N 2 − 1 ) g s 4 m t 4 ( m H 2 ( log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 ) − 4 m t 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) ) 2 1024 π 4 m H 4 m W 2 ( sin ( θ W ) ) 2 \frac{\text{e}^2 \left(N^2-1\right) g_s^4
m_t^4 \left(m_H^2 \left(\log ^2\left(\frac{m_H \sqrt{m_H^2-4
m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)-4\right)-4 m_t^2 \log
^2\left(\frac{m_H \sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2
m_t^2}\right)\right){}^2}{1024 \pi ^4 m_H^4 m_W^2 \left(\left.\sin
(\theta _W\right)\right){}^2} 1024 π 4 m H 4 m W 2 ( sin ( θ W ) ) 2 e 2 ( N 2 − 1 ) g s 4 m t 4 ( m H 2 ( log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 ) − 4 m t 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) ) 2
Total decay rate
phaseSpacePrefactor[ m_ ] := 1 / (16 Pi SMP[ "m_H" ] ) Sqrt [ 1 - 4 m ^ 2 / SMP[ "m_H" ] ^ 2 ]
totalDecayRate = phaseSpacePrefactor[ 0 ] ampSquared[ 0 ] //
ReplaceAll [ #, { SMP[ "e" ] ^ 2 -> 4 Pi SMP[ "alpha_fs" ],
SMP[ "g_s" ] ^ 4 -> 16 Pi ^ 2 SMP[ "alpha_s" ] ^ 2 }] & // Simplify
α ( N 2 − 1 ) m t 4 α s 2 ( m H 2 ( log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 ) − 4 m t 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) ) 2 256 π 2 m H 5 m W 2 ( sin ( θ W ) ) 2 \frac{\alpha \left(N^2-1\right) m_t^4
\alpha _s^2 \left(m_H^2 \left(\log ^2\left(\frac{m_H \sqrt{m_H^2-4
m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)-4\right)-4 m_t^2 \log
^2\left(\frac{m_H \sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2
m_t^2}\right)\right){}^2}{256 \pi ^2 m_H^5 m_W^2 \left(\left.\sin
(\theta _W\right)\right){}^2} 256 π 2 m H 5 m W 2 ( sin ( θ W ) ) 2 α ( N 2 − 1 ) m t 4 α s 2 ( m H 2 ( log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 ) − 4 m t 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) ) 2
ISq = totalDecayRate/ ( SMP[ "alpha_s" ] ^ 2 / (9 Pi ^ 2 ) SMP[ "m_H" ] ^ 2 / SMP[ "m_W" ] ^ 2 *
SMP[ "alpha_fs" ] SMP[ "m_H" ] / (8 SMP[ "sin_W" ] ^ 2 ))
9 ( N 2 − 1 ) m t 4 ( m H 2 ( log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) − 4 ) − 4 m t 2 log 2 ( m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 2 m t 2 ) ) 2 32 m H 8 \frac{9 \left(N^2-1\right) m_t^4
\left(m_H^2 \left(\log ^2\left(\frac{m_H \sqrt{m_H^2-4 m_t^2}-m_H^2+2
m_t^2}{2 m_t^2}\right)-4\right)-4 m_t^2 \log ^2\left(\frac{m_H
\sqrt{m_H^2-4 m_t^2}-m_H^2+2 m_t^2}{2 m_t^2}\right)\right){}^2}{32
m_H^8} 32 m H 8 9 ( N 2 − 1 ) m t 4 ( m H 2 ( log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) − 4 ) − 4 m t 2 log 2 ( 2 m t 2 m H m H 2 − 4 m t 2 − m H 2 + 2 m t 2 ) ) 2
ISq corresponds to I(m_H2/m_q 2) from Peskin and Schroeder,
Final Project 3, part (c). It should go to 1 for m_q -> Infinity and
to 0 for m_q -> 0
limit1 = Limit [ ISq, SMP[ "m_t" ] -> Infinity ] /. SUNN -> 3
limit2 = Limit [ ISq, SMP[ "m_t" ] -> 0 ]
1 1 1
0 0 0
Check the final results
knownResults = { 1 , 0 } ;
FCCompareResults[{ limit1, limit2},
knownResults, Factoring -> Simplify ,
Text -> { " \t Compare to Peskin and Schroeder,An Introduction to QFT, Final Project III, part (c):" ,
"CORRECT." , "WRONG!" }, Interrupt -> { Hold [ Quit [ 1 ]], Automatic }] ;
Print [ " \t CPU Time used: " , Round [ N [ TimeUsed [], 3 ], 0.001 ], " s." ] ;
\ tCompare to Peskin and Schroeder,An Introduction to QFT, Final Project III, part (c): CORRECT. \text{$\backslash $tCompare to Peskin and
Schroeder,An Introduction to QFT, Final Project III, part (c):}
\;\text{CORRECT.} \tCompare to Peskin and Schroeder,An Introduction to QFT, Final Project III, part (c): CORRECT.
\ tCPU Time used: 22.532 s. \text{$\backslash $tCPU Time used:
}22.532\text{ s.} \tCPU Time used: 22.532 s.