FeynCalc manual (development version)

TR

TR[exp] calculates the Dirac trace of exp. Depending on the setting of the option SUNTrace also a trace over SU(N) objects is performed.

TR[list] finds the trace of the matrix or tensor list.

TR[list, f] finds a generalized trace, combining terms with f instead of Plus.

TR[list, f, n] goes down to level n in list.

TR[expression] calculates the DiracTrace, i.e., TR[expression] if any of DiracGamma, GA, GAD, GS or GSD is present in expression.

See also

Overview, DiracSimplify, DiracTrace, FermionSpinSum, SUNTrace.

Examples

GA[\[Mu], \[Nu]] 
 
TR[%]

\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }

4 \bar{g}^{\mu \nu }

TR[(GSD[p] + m) . GAD[\[Mu]] . (GSD[q] - m) . GAD[\[Nu]]]

-4 \left(m^2 g^{\mu \nu }+g^{\mu \nu } (p\cdot q)-p^{\nu } q^{\mu }-p^{\mu } q^{\nu }\right)

TR[GA[\[Mu], \[Nu], \[Rho], \[Sigma], 5]]

-4 i \bar{\epsilon }^{\mu \nu \rho \sigma }

TR[GS[p, q, r, s]]

4 \left(\left(\overline{p}\cdot \overline{s}\right) \left(\overline{q}\cdot \overline{r}\right)-\left(\overline{p}\cdot \overline{r}\right) \left(\overline{q}\cdot \overline{s}\right)+\left(\overline{p}\cdot \overline{q}\right) \left(\overline{r}\cdot \overline{s}\right)\right)

TR[(GS[p] + m) . GA[\[Mu]] . (GS[q] + m) . GA[\[Mu]], Factoring -> True]

8 \left(2 m^2-\overline{p}\cdot \overline{q}\right)

TR[GA[\[Alpha], \[Beta]], FCE -> True]

4 \bar{g}^{\alpha \beta }

GA[\[Mu], \[Nu]] SUNT[b] . SUNT[c] SUNDelta[c, b] 
 
TR[%, SUNTrace -> False, SUNNToCACF -> True] 
 
TR[%%, SUNTrace -> True, SUNNToCACF -> True]

\delta ^{bc} T^b.T^c \bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }

0ot3t654zfwoj

0ghd8b8tpozaa

0hz7g0pbjf1j9

0hw442jsqmu7m

4 C_F \bar{g}^{\mu \nu }

0yp1tcn7js8vw

1ws0yyvp2z6rk

14q9vfcl2ne33

078irs7exvkqw

4 C_F \bar{g}^{\mu \nu }

TR[1, SUNTrace -> False, SUNNToCACF -> True]

092oi250umo62

1kxrxifnbycah

0ejd5087k1e3u

0r8qqzg2cmsx4

4

TR[1, SUNTrace -> True, SUNNToCACF -> True]

0hdji48sjs0uw

1va2upktn7wft

1fzren43hocdr

12gtp4iazvrd5

4