TR[exp] calculates the Dirac trace of exp.
Depending on the setting of the option SUNTrace also a
trace over SU(N) objects is
performed.
TR[list] finds the trace of the matrix or tensor
list.
TR[list, f] finds a generalized trace, combining terms
with f instead of Plus.
TR[list, f, n] goes down to level n in
list.
TR[expression] calculates the DiracTrace,
i.e., TR[expression] if any of DiracGamma,
GA, GAD, GS or GSD
is present in expression.
Overview, DiracSimplify, DiracTrace, FermionSpinSum, SUNTrace.
GA[\[Mu], \[Nu]]
TR[%]\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }
4 \bar{g}^{\mu \nu }
TR[(GSD[p] + m) . GAD[\[Mu]] . (GSD[q] - m) . GAD[\[Nu]]]-4 \left(m^2 g^{\mu \nu }+g^{\mu \nu } (p\cdot q)-p^{\nu } q^{\mu }-p^{\mu } q^{\nu }\right)
TR[GA[\[Mu], \[Nu], \[Rho], \[Sigma], 5]]-4 i \bar{\epsilon }^{\mu \nu \rho \sigma }
TR[GS[p, q, r, s]]4 \left(\left(\overline{p}\cdot \overline{s}\right) \left(\overline{q}\cdot \overline{r}\right)-\left(\overline{p}\cdot \overline{r}\right) \left(\overline{q}\cdot \overline{s}\right)+\left(\overline{p}\cdot \overline{q}\right) \left(\overline{r}\cdot \overline{s}\right)\right)
TR[(GS[p] + m) . GA[\[Mu]] . (GS[q] + m) . GA[\[Mu]], Factoring -> True]8 \left(2 m^2-\overline{p}\cdot \overline{q}\right)
TR[GA[\[Alpha], \[Beta]], FCE -> True]4 \bar{g}^{\alpha \beta }
GA[\[Mu], \[Nu]] SUNT[b] . SUNT[c] SUNDelta[c, b]
TR[%, SUNTrace -> False, SUNNToCACF -> True]
TR[%%, SUNTrace -> True, SUNNToCACF -> True]\delta ^{bc} T^b.T^c \bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }
4 C_F \bar{g}^{\mu \nu }
4 C_F \bar{g}^{\mu \nu }
TR[1, SUNTrace -> False, SUNNToCACF -> True]4
TR[1, SUNTrace -> True, SUNNToCACF -> True]4