FeynCalc manual (development version)

SumS

SumS[1, m] is the harmonic number S_ 1(m) = \sum_ {i=1}^m i^{-1}.

SumS[1,1,m] is \sum_{i=1}^m S_ 1 (i)/i.

SumS[k,l,m] is \sum_{i=1}^m S_l (i)/i^k.

SumS[r, n] represents Sum[Sign[r]^i/i^Abs[r], {i, 1, n}].

SumS[r,s, n] is Sum[Sign[r]^k/k^Abs[r] Sign[s]^j/j^Abs[s], {k, 1, n}, {j, 1, k}] etc.

See also

Overview, SumP, SumT.

Examples

SumS[1, m - 1]

S_1(m-1)

SumS[2, m - 1]

S_2(m-1)

SumS[-1, m]

S_{-1}(m)

SumS[1, m, Reduce -> True]

S_1(m-1)+\frac{1}{m}

SumS[3, m + 2, Reduce -> True]

S_3(m+1)+\frac{1}{(m+2)^3}

SetOptions[SumS, Reduce -> True]; 
 
SumS[3, m + 2]

\frac{1}{m^3}+S_3(m-1)+\frac{1}{(m+1)^3}+\frac{1}{(m+2)^3}

SetOptions[SumS, Reduce -> False]; 
 
SumS[1, 4]

\frac{25}{12}

SumS[1, 2, m - 1]

S_{12}(m-1)

SumS[1, 1, 1, 11]

\frac{31276937512951}{4260000729600}

SumS[-1, 4]

-\frac{7}{12}

SumT[1, 4]

-\frac{7}{12}