FeynCalc manual (development version)

SplitSymbolicPowers

SplitSymbolicPowers is an option for FCFeynmanParametrize and other functions. When set to True, propagator powers containing symbols will be split into a nonnegative integer piece and the remaining piece. This leads to a somewhat different form of the resulting parametric integral, although the final result remains the same. The default value is False.

See also

Overview, FCFeynmanParametrize.

Examples

SFAD[{p, m^2, r + 2}]

(p^2-m^2+i \eta )^{-r-2}

v1 = FCFeynmanParametrize[SFAD[{p, m^2, r - 1}], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]

\left\{1,\frac{m^6 (-1)^{r-1} \left(m^2\right)^{-\varepsilon -r} \Gamma (\varepsilon +r-3)}{\Gamma (r-1)},\{\}\right\}

v2 = FCFeynmanParametrize[SFAD[{p, m^2, r - 1}], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}, 
   SplitSymbolicPowers -> True]

\left\{1,\frac{m^6 (-1)^{r-1} (r-1) \left(m^2\right)^{-\varepsilon -r} \Gamma (\varepsilon +r-3)}{\Gamma (r)},\{\}\right\}

Both parametrizations lead to the same results (as expected)

Series[v1[[2]], {Epsilon, 0, 1}] // Normal 
 
Series[v2[[2]], {Epsilon, 0, 1}] // Normal 
 
% - %% // Simplify // FunctionExpand

\frac{\varepsilon m^6 (-1)^r \left(m^2\right)^{-r} \Gamma (r-3) \left(\log \left(m^2\right)-\psi ^{(0)}(r-3)\right)}{\Gamma (r-1)}-\frac{m^6 (-1)^r \left(m^2\right)^{-r} \Gamma (r-3)}{\Gamma (r-1)}

\frac{\varepsilon m^6 (-1)^r (r-1) \left(m^2\right)^{-r} \Gamma (r-3) \left(\log \left(m^2\right)-\psi ^{(0)}(r-3)\right)}{\Gamma (r)}-\frac{m^6 (-1)^r (r-1) \left(m^2\right)^{-r} \Gamma (r-3)}{\Gamma (r)}

0