FeynCalc manual (development version)

PauliChain

PauliChain[x, i, j] denotes a chain of Pauli matrices x, where the Pauli indices i and j are explicit.

See also

Overview, PCHN, PauliIndex, PauliIndexDelta, PauliChainJoin, PauliChainExpand, PauliChainFactor.

Examples

A standalone Pauli matrix \sigma^i_{jk}

PauliChain[PauliSigma[CartesianIndex[a]], PauliIndex[i], PauliIndex[j]]

\left(\overline{\sigma }^a\right){}_{ij}

A chain of Pauli matrices with open indices

PauliChain[PauliSigma[CartesianIndex[a, D - 1], D - 1] . PauliSigma[CartesianIndex[b, D - 1], D - 1], PauliIndex[i], PauliIndex[j]]

\left(\sigma ^a.\sigma ^b\right){}_{ij}

A PauliChain with only two arguments denotes a spinor component

PauliChain[PauliXi[-I], PauliIndex[i]]

\left(\xi ^{\dagger }\right){}_i

PauliChain[PauliEta[-I], PauliIndex[i]]

\left(\eta ^{\dagger }\right){}_i

PauliChain[PauliIndex[i], PauliXi[I]]

(\xi )_i

PauliChain[PauliIndex[i], PauliEta[I]]

(\eta )_i

The chain may also be partially open or closed

PauliChain[PauliSigma[CartesianIndex[a]] . (m + PauliSigma[CartesianMomentum[p]]) . PauliSigma[CartesianIndex[b]], PauliXi[-I], PauliIndex[j]]

\left(\xi ^{\dagger }.\overline{\sigma }^a.\left(\overline{\sigma }\cdot \overline{p}+m\right).\overline{\sigma }^b\right){}_j

PauliChain[PauliSigma[CartesianIndex[a]] . (m + PauliSigma[CartesianMomentum[p]]) . PauliSigma[CartesianIndex[b]], PauliIndex[i], PauliXi[I]]

\left(\overline{\sigma }^a.\left(\overline{\sigma }\cdot \overline{p}+m\right).\overline{\sigma }^b.\xi \right){}_i

PauliChain[PauliSigma[CartesianIndex[a]] . (m + PauliSigma[CartesianMomentum[p]]) . PauliSigma[CartesianIndex[b]], PauliXi[-I], PauliEta[I]]

\left(\xi ^{\dagger }.\overline{\sigma }^a.\left(\overline{\sigma }\cdot \overline{p}+m\right).\overline{\sigma }^b.\eta \right)

PauliChain[1, PauliXi[-I], PauliEta[I]]

\left(\xi ^{\dagger }.\eta \right)