PaVeUVPart[expr]
replaces all occurring
Passarino-Veltman functions by their explicit values, where only the UV
divergent part is preserved, while possible IR divergences and the
finite part are discarded. The function uses the algorithm from arXiv:hep-ph/0609282 by
G. Sulyok. This allows to treat Passarino-Veltman of arbitrary rank and
multiplicity
[A0[m^2]] PaVeUVPart
-\frac{2 m^2}{D-4}
[x + y B0[SPD[p, p], 0, M^2]] PaVeUVPart
\frac{D x-4 x-2 y}{D-4}
[0, 0, {p10, p12, p20}, {m1^2, m2^2, m3^2}]
PaVe
[%] PaVeUVPart
\text{C}_{00}\left(\text{p10},\text{p12},\text{p20},\text{m1}^2,\text{m2}^2,\text{m3}^2\right)
-\frac{1}{2 (D-4)}
[0, 0, 0, 0, 0, 0, {p10, p12, p23, 0, p20, p13}, {m1^2, m2^2, m3^2, m4^2}]
PaVe
[%] PaVeUVPart
\text{D}_{000000}\left(0,\text{p10},\text{p12},\text{p23},\text{p13},\text{p20},\text{m4}^2,\text{m1}^2,\text{m2}^2,\text{m3}^2\right)
\frac{-5 \;\text{m1}^2-5 \;\text{m2}^2-5 \;\text{m3}^2-5 \;\text{m4}^2+\text{p10}+\text{p12}+\text{p13}+\text{p20}+\text{p23}}{480 (D-4)}
= FVD[k + p, rho] FVD[k + p, si] FAD[k, {k + p, 0, 2}]
int
[int, k, UsePaVeBasis -> True]
TID
% // PaVeUVPart[#, FCE -> True] &
\frac{(k+p)^{\text{rho}} (k+p)^{\text{si}}}{k^2.(k+p)^4}
i \pi ^2 g^{\text{rho}\;\text{si}} \;\text{C}_{00}\left(0,p^2,p^2,0,0,0\right)+i \pi ^2 p^{\text{rho}} p^{\text{si}} \;\text{C}_{11}\left(p^2,p^2,0,0,0,0\right)
-\frac{i \pi ^2 g^{\text{rho}\;\text{si}}}{2 (D-4)}