LightConePerpendicularComponent[LorentzIndex[mu],Momentum[n],Momentum[nb]]
denotes the perpendicular component of the Lorentz index mu
with respect to the lightcone momenta n
and
nb
.
LightConePerpendicularComponent[Momentum[p],Momentum[n],Momentum[nb]]
denotes the perpendicular component of the 4-momentum p
with respect to the lightcone momenta n
and
nb
.
Overview, LorentzIndex, Momentum.
4-dimensional Lorentz vector
[LightConePerpendicularComponent[LorentzIndex[\[Mu]], Momentum[n],Momentum[nb]],
Pair[Momentum[p], Momentum[n], Momentum[nb]]] LightConePerpendicularComponent
\overline{p}^{\mu }{}_{\perp }
Metric tensor
[LightConePerpendicularComponent[LorentzIndex[\[Mu]], Momentum[n],Momentum[nb]],
Pair[LorentzIndex[\[Nu]], Momentum[n], Momentum[nb]]] LightConePerpendicularComponent
\bar{g}^{\mu \nu }{}_{\perp }
Dirac matrix
[LightConePerpendicularComponent[LorentzIndex[\[Mu]], Momentum[n], Momentum[nb]]] DiracGamma
\bar{\gamma }^{\mu }{}_{\perp }
Contractions
[LightConePerpendicularComponent[LorentzIndex[\[Mu]],
DiracGamma[n], Momentum[nb]]] FV[p, \[Mu]] // Contract
Momentum
% // StandardForm
\bar{\gamma }\cdot \overline{p}_{\perp }
(*DiracGamma[LightConePerpendicularComponent[Momentum[p], Momentum[n], Momentum[nb]]]*)