LightConePerpendicularComponent[LorentzIndex[mu],Momentum[n],Momentum[nb]]
denotes the perpendicular component of the Lorentz index mu
with respect to the lightcone momenta n and
nb.
LightConePerpendicularComponent[Momentum[p],Momentum[n],Momentum[nb]]
denotes the perpendicular component of the 4-momentum p
with respect to the lightcone momenta n and
nb.
Overview, LorentzIndex, Momentum.
4-dimensional Lorentz vector
Pair[LightConePerpendicularComponent[LorentzIndex[\[Mu]], Momentum[n],Momentum[nb]],
LightConePerpendicularComponent[Momentum[p], Momentum[n], Momentum[nb]]]\overline{p}^{\mu }{}_{\perp }
Metric tensor
Pair[LightConePerpendicularComponent[LorentzIndex[\[Mu]], Momentum[n],Momentum[nb]],
LightConePerpendicularComponent[LorentzIndex[\[Nu]], Momentum[n], Momentum[nb]]]\bar{g}^{\mu \nu }{}_{\perp }
Dirac matrix
DiracGamma[LightConePerpendicularComponent[LorentzIndex[\[Mu]], Momentum[n], Momentum[nb]]]\bar{\gamma }^{\mu }{}_{\perp }
Contractions
DiracGamma[LightConePerpendicularComponent[LorentzIndex[\[Mu]],
Momentum[n], Momentum[nb]]] FV[p, \[Mu]] // Contract
% // StandardForm\bar{\gamma }\cdot \overline{p}_{\perp }
(*DiracGamma[LightConePerpendicularComponent[Momentum[p], Momentum[n], Momentum[nb]]]*)