LeviCivita[mu, nu, rho, si]
is an input function for the
totally antisymmetric Levi-Civita tensor. It evaluates automatically to
the internal representation
Eps[LorentzIndex[mu], LorentzIndex[nu], LorentzIndex[rho], LorentzIndex[si]]
(or with a second argument in LorentzIndex
for the
Dimension
, if the option Dimension
of
LeviCivita
is changed).
LeviCivita[mu , nu, ...][p, ...]
evaluates to
Eps[LorentzIndex[mu], LorentzIndex[nu], ..., Momentum[p], ...]
.
The shortcut LeviCivita
is deprecated, please use
LC
instead!
[\[Alpha], \[Beta], \[Gamma], \[Delta]] LeviCivita
\bar{\epsilon }^{\alpha \beta \gamma \delta }
[][p, q, r, s] LeviCivita
\bar{\epsilon }^{\overline{p}\overline{q}\overline{r}\overline{s}}
[\[Alpha], \[Beta]][p, q] LeviCivita
\bar{\epsilon }^{\alpha \beta \overline{p}\overline{q}}
[\[Alpha], \[Beta]][p, q] // StandardForm
LeviCivita
(*Eps[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]], Momentum[p], Momentum[q]]*)
LeviCivita
is scheduled for removal in the future
versions of FeynCalc. The safe alternative is to use
LC
.
[\[Alpha], \[Beta], \[Gamma], \[Delta]] LC
\bar{\epsilon }^{\alpha \beta \gamma \delta }
[][p, q, r, s] LC
\bar{\epsilon }^{\overline{p}\overline{q}\overline{r}\overline{s}}
[\[Alpha], \[Beta]][p, q] LC
\bar{\epsilon }^{\alpha \beta \overline{p}\overline{q}}
[\[Alpha], \[Beta], \[Gamma], \[Delta]] LCD
\overset{\text{}}{\epsilon }^{\alpha \beta \gamma \delta }
[][p, q, r, s] LCD
\overset{\text{}}{\epsilon }^{pqrs}
[\[Alpha], \[Beta]][p, q] LCD
\overset{\text{}}{\epsilon }^{\alpha \beta pq}
[LC[\[Alpha], \[Beta], \[Gamma], \[Delta]]] === LeviCivita[\[Alpha], \[Beta], \[Gamma], \[Delta]] FCI
\text{True}
[LCD[\[Alpha], \[Beta], \[Gamma], \[Delta]]] === LeviCivita[\[Alpha], \[Beta], \[Gamma], \[Delta], Dimension -> D] FCI
\text{True}