Handling indices
See also
Overview.
Manipulations of
tensorial quantities
When you square an expression with dummy indices, you must rename
them first. People often do this by hand, e.g. as in
ex1 = (FV[p, \[Mu]] + FV[q, \[Mu]]) FV[r, \[Mu]] FV[r, \[Nu]]
rμrν(pμ+qμ)
ex1 (ex1 /. \[Mu] -> \[Rho])
Contract[%]
rμ(rν)2rρ(pμ+qμ)(pρ+qρ)
r2(p⋅r+q⋅r)2
However, FeynCalc offers a function for that
FCRenameDummyIndices[ex1]
rνr$AL($19)(p$AL($19)+q$AL($19))
ex1 FCRenameDummyIndices[ex1]
Contract[%]
rμrνrν(pμ+qμ)r$AL($20)(p$AL($20)+q$AL($20))
r2(p⋅r+q⋅r)2
Notice that FCRenameDummyIndices
does not canonicalize
the indices
FV[p, \[Nu]] FV[q, \[Nu]] - FV[p, \[Mu]] FV[q, \[Mu]]
FCRenameDummyIndices[%]
pνqν−pμqμ
p$AL($22)q$AL($22)−p$AL($21)q$AL($21)
There is a function for that too
FV[p, \[Nu]] FV[q, \[Nu]] - FV[p, \[Mu]] FV[q, \[Mu]]
FCCanonicalizeDummyIndices[%]
pνqν−pμqμ
0
Often we also need to uncontract already contracted indices. This is
done by Uncontract
. By default, it handles only
contractions with Dirac matrices and Levi-Civita tensors
LC[][p, q, r, s]
Uncontract[%, p]
Uncontract[%%, p, q]
ϵˉpqrs
p$AL($31)ϵˉ$AL($31)qrs
p$AL($33)q$AL($32)(−ϵˉ$AL($32)$AL($33)rs)
SP[p, q]
Uncontract[%, p]
p⋅q
p⋅q
To uncontract scalar products as well, use the option
Pair->All
Uncontract[%, p, Pair -> All]
p$AL($34)q$AL($34)
Sometimes one might want to define custom symbolic tensors that are
not specified in terms of the 4-vectors, metric tensors and
Levi-Civitas. This is possible in FeynCalc, but the handling of such
objects is not as good as that of the built-in quantities
DeclareFCTensor[myTensor];
myTensor[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]] FV[p, \[Nu]] FV[q, \[Mu]]
ex = Contract[%]
pνqμmyTensor(μ,ν)
myTensor(q,p)
Uncontract[ex, p, q, Pair -> All]
p$AL($36)q$AL($35)myTensor($AL($35),$AL($36))
(myTensor[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]] MT[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]] +
myTensor[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]]] MT[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]]])
FCCanonicalizeDummyIndices[%, LorentzIndexNames -> {i1, i2}]
gˉαβmyTensor(α,β)+gˉμνmyTensor(μ,ν)
2gˉi1i2myTensor(i1,i2)
To extract the list of free or dummy indices present in the
expression, one can use FCGetFreeIndices
and
FCGetDummyIndices
respectively
FCI[FV[p, \[Mu]] FV[q, \[Nu]]]
FCGetFreeIndices[%, {LorentzIndex}]
pμqν
{μ,ν}
```mathematica FCI[FV[p, [Mu]] FV[q, [Mu]]] FCGetDummyIndices[%,
{LorentzIndex}]
```mathematica
pμqμ
{μ}