FeynCalc manual (development version)

Handling indices

See also

Overview.

Manipulations of tensorial quantities

When you square an expression with dummy indices, you must rename them first. People often do this by hand, e.g. as in

ex1 = (FV[p, \[Mu]] + FV[q, \[Mu]]) FV[r, \[Mu]] FV[r, \[Nu]]

rμrν(pμ+qμ)\overline{r}^{\mu } \overline{r}^{\nu } \left(\overline{p}^{\mu }+\overline{q}^{\mu }\right)

ex1 (ex1 /. \[Mu] -> \[Rho])
Contract[%]

rμ(rν)2rρ(pμ+qμ)(pρ+qρ)\overline{r}^{\mu } \left(\overline{r}^{\nu }\right)^2 \overline{r}^{\rho } \left(\overline{p}^{\mu }+\overline{q}^{\mu }\right) \left(\overline{p}^{\rho }+\overline{q}^{\rho }\right)

r2(pr+qr)2\overline{r}^2 \left(\overline{p}\cdot \overline{r}+\overline{q}\cdot \overline{r}\right)^2

However, FeynCalc offers a function for that

FCRenameDummyIndices[ex1]

rνr$AL($19)(p$AL($19)+q$AL($19))\overline{r}^{\nu } \overline{r}^{\text{\$AL}(\text{\$19})} \left(\overline{p}^{\text{\$AL}(\text{\$19})}+\overline{q}^{\text{\$AL}(\text{\$19})}\right)

ex1 FCRenameDummyIndices[ex1]
Contract[%]

rμrνrν(pμ+qμ)r$AL($20)(p$AL($20)+q$AL($20))\overline{r}^{\mu } \overline{r}^{\nu } \overline{r}^{\nu } \left(\overline{p}^{\mu }+\overline{q}^{\mu }\right) \overline{r}^{\text{\$AL}(\text{\$20})} \left(\overline{p}^{\text{\$AL}(\text{\$20})}+\overline{q}^{\text{\$AL}(\text{\$20})}\right)

r2(pr+qr)2\overline{r}^2 \left(\overline{p}\cdot \overline{r}+\overline{q}\cdot \overline{r}\right)^2

Notice that FCRenameDummyIndices does not canonicalize the indices

FV[p, \[Nu]] FV[q, \[Nu]] - FV[p, \[Mu]] FV[q, \[Mu]]
FCRenameDummyIndices[%]

pνqνpμqμ\overline{p}^{\nu } \overline{q}^{\nu }-\overline{p}^{\mu } \overline{q}^{\mu }

p$AL($22)q$AL($22)p$AL($21)q$AL($21)\overline{p}^{\text{\$AL}(\text{\$22})} \overline{q}^{\text{\$AL}(\text{\$22})}-\overline{p}^{\text{\$AL}(\text{\$21})} \overline{q}^{\text{\$AL}(\text{\$21})}

There is a function for that too

FV[p, \[Nu]] FV[q, \[Nu]] - FV[p, \[Mu]] FV[q, \[Mu]]
FCCanonicalizeDummyIndices[%]

pνqνpμqμ\overline{p}^{\nu } \overline{q}^{\nu }-\overline{p}^{\mu } \overline{q}^{\mu }

00

Often we also need to uncontract already contracted indices. This is done by Uncontract. By default, it handles only contractions with Dirac matrices and Levi-Civita tensors

LC[][p, q, r, s]
Uncontract[%, p]
Uncontract[%%, p, q]

ϵˉpqrs\bar{\epsilon }^{\overline{p}\overline{q}\overline{r}\overline{s}}

p$AL($31)ϵˉ$AL($31)qrs\overline{p}^{\text{\$AL}(\text{\$31})} \bar{\epsilon }^{\text{\$AL}(\text{\$31})\overline{q}\overline{r}\overline{s}}

p$AL($33)q$AL($32)(ϵˉ$AL($32)$AL($33)rs)\overline{p}^{\text{\$AL}(\text{\$33})} \overline{q}^{\text{\$AL}(\text{\$32})} \left(-\bar{\epsilon }^{\text{\$AL}(\text{\$32})\text{\$AL}(\text{\$33})\overline{r}\overline{s}}\right)

SP[p, q]
Uncontract[%, p]

pq\overline{p}\cdot \overline{q}

pq\overline{p}\cdot \overline{q}

To uncontract scalar products as well, use the option Pair->All

Uncontract[%, p, Pair -> All]

p$AL($34)q$AL($34)\overline{p}^{\text{\$AL}(\text{\$34})} \overline{q}^{\text{\$AL}(\text{\$34})}

Sometimes one might want to define custom symbolic tensors that are not specified in terms of the 4-vectors, metric tensors and Levi-Civitas. This is possible in FeynCalc, but the handling of such objects is not as good as that of the built-in quantities

DeclareFCTensor[myTensor];
myTensor[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]] FV[p, \[Nu]] FV[q, \[Mu]]
ex = Contract[%]

pνqμ  myTensor(μ,ν)\overline{p}^{\nu } \overline{q}^{\mu } \;\text{myTensor}(\mu ,\nu )

myTensor(q,p)\text{myTensor}\left(\overline{q},\overline{p}\right)

Uncontract[ex, p, q, Pair -> All]

p$AL($36)q$AL($35)  myTensor($AL($35),$AL($36))\overline{p}^{\text{\$AL}(\text{\$36})} \overline{q}^{\text{\$AL}(\text{\$35})} \;\text{myTensor}(\text{\$AL}(\text{\$35}),\text{\$AL}(\text{\$36}))

(myTensor[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]] MT[LorentzIndex[\[Mu]], LorentzIndex[\[Nu]]] + 
   myTensor[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]]] MT[LorentzIndex[\[Alpha]], LorentzIndex[\[Beta]]])
FCCanonicalizeDummyIndices[%, LorentzIndexNames -> {i1, i2}]

gˉαβ  myTensor(α,β)+gˉμν  myTensor(μ,ν)\bar{g}^{\alpha \beta } \;\text{myTensor}(\alpha ,\beta )+\bar{g}^{\mu \nu } \;\text{myTensor}(\mu ,\nu )

2gˉi1  i2  myTensor(i1,i2)2 \bar{g}^{\text{i1}\;\text{i2}} \;\text{myTensor}(\text{i1},\text{i2})

To extract the list of free or dummy indices present in the expression, one can use FCGetFreeIndices and FCGetDummyIndices respectively

FCI[FV[p, \[Mu]] FV[q, \[Nu]]] 
FCGetFreeIndices[%, {LorentzIndex}]

pμqν\overline{p}^{\mu } \overline{q}^{\nu }

{μ,ν}\{\mu ,\nu \}

```mathematica FCI[FV[p, [Mu]] FV[q, [Mu]]] FCGetDummyIndices[%, {LorentzIndex}]

```mathematica

pμqμ\overline{p}^{\mu } \overline{q}^{\mu }

{μ}\{\mu \}