ImplicitPauliIndex
is a data type. It mainly applies to
names of quantum fields specifying that the corresponding field carries
an implicit Pauli index.
This information can be supplied e.g. via
DataType[QuarkFieldChi, ImplicitPauliIndex] = True
, where
QuarkFieldChi
is a possible name of the relevant field.
The ImplicitDiracIndex
property becomes relevant when
simplifying noncommutative products involving QuantumField
s
via ExpandPartialD
, DotSimplify
.
Overview, DataType, ImplicitSUNFIndex, ImplicitDiracIndex
Default (possibly unwanted) behavior
= QuantumField[QuarkFieldChiDagger] . CSI[i] . QuantumField[QuarkFieldChi] ex
\chi ^{\dagger }.\overline{\sigma }^i.\chi
[ex] ExpandPartialD
\overline{\sigma }^i.\chi ^{\dagger }.\chi
Now we let FeynCalc know that QuarkFieldChiDagger
and
QuarkFieldChi
carry an implicit Pauli index that connects
them to the Pauli matrix.
[QuarkFieldChi, ImplicitPauliIndex] = True;
DataType[QuarkFieldChiDagger, ImplicitPauliIndex] = True; DataType
[ex] ExpandPartialD
\chi ^{\dagger }.\overline{\sigma }^i.\chi