FeynCalc manual (development version)

HypInt

HypInt[exp, t] substitutes all Hypergeometric2F1[a,b,c,z] in exp with Gamma[c]/(Gamma[b] Gamma[c-b]) Integratedx[t,0,1] t^(b-1) (1-t)^(c-b-1) (1-t z)^(-a).

See also

Overview, Series2.

Examples

Hypergeometric2F1[a, b, c, z] 
 
HypInt[%, t]

\, _2F_1(a,b;c;z)

\frac{t^{b-1} \Gamma (c) (1-t z)^{-a} (1-t)^{-b+c-1} \int _0^1dt\, }{\Gamma (b) \Gamma (c-b)}