GenPaVe[i, j, ..., {{0, m0}, {Momentum[p1], m1}, {Momentum[p2], m2}, ...]
denotes the invariant (and scalar) Passarino-Veltman integrals, i.e. the
coefficient functions of the tensor integral decomposition. In contrast
to PaVe
which uses the LoopTools convention, masses and
external momenta in GenPaVe
are written in the same order
as they appear in the original tensor integral,
i.e. FAD[{q,m0},{q-p1,m1},{q-p2,m2},...]
.
[q, \[Mu]] FVD[q, \[Nu]] FAD[{q, m0}, {q + p1, m1}, {q + p2, m2}]/(I*Pi^2)
FVD
[%, q, UsePaVeBasis -> True]
TID
[%%, q, UsePaVeBasis -> True, GenPaVe -> True] TID
-\frac{i q^{\mu } q^{\nu }}{\pi ^2 \left(q^2-\text{m0}^2\right).\left((\text{p1}+q)^2-\text{m1}^2\right).\left((\text{p2}+q)^2-\text{m2}^2\right)}
g^{\mu \nu } \;\text{C}_{00}\left(\text{p1}^2,\text{p2}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{m1}^2,\text{m0}^2,\text{m2}^2\right)+\text{p1}^{\mu } \;\text{p1}^{\nu } \;\text{C}_{11}\left(\text{p1}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{p2}^2,\text{m0}^2,\text{m1}^2,\text{m2}^2\right)+\text{p2}^{\mu } \;\text{p2}^{\nu } \;\text{C}_{11}\left(\text{p2}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{p1}^2,\text{m0}^2,\text{m2}^2,\text{m1}^2\right)+\left(\text{p1}^{\nu } \;\text{p2}^{\mu }+\text{p1}^{\mu } \;\text{p2}^{\nu }\right) \;\text{C}_{12}\left(\text{p1}^2,-2 (\text{p1}\cdot \;\text{p2})+\text{p1}^2+\text{p2}^2,\text{p2}^2,\text{m0}^2,\text{m1}^2,\text{m2}^2\right)
g^{\mu \nu } \;\text{GenPaVe}\left(\{0,0\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)+\text{p1}^{\mu } \;\text{p1}^{\nu } \;\text{GenPaVe}\left(\{1,1\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)+\text{p2}^{\mu } \;\text{p2}^{\nu } \;\text{GenPaVe}\left(\{2,2\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)+\left(\text{p1}^{\nu } \;\text{p2}^{\mu }+\text{p1}^{\mu } \;\text{p2}^{\nu }\right) \;\text{GenPaVe}\left(\{1,2\},\left( \begin{array}{cc} 0 & \;\text{m0} \\ \;\text{p1} & \;\text{m1} \\ \;\text{p2} & \;\text{m2} \\ \end{array} \right)\right)