FunctionalD[exp, {QuantumField[name, LorentzIndex[mu], ..., SUNIndex[a]][p], ...}]
calculates the functional derivative of exp with respect to the
QuantumField list (with incoming momenta \text{p}, etc.) and does the Fourier
transform.
FunctionalD[expr, {QuantumField[name, LorentzIndex[mu], ... SUNIndex[a]], ...}]
calculates the functional derivative and does partial integration but
omits the \text{x}-space delta
functions.
FunctionalD
is a low level function used in
FeynRule
.
Overview, FeynRule, QuantumField.
Instead of the usual \delta \phi (x)/ \delta \phi (y)= \delta ^{(D)}(x-y) the arguments and the \delta function are omitted, i.e. for the program for simplicity: \delta \phi / \delta \phi =1.
[QuantumField[\[Phi]], QuantumField[\[Phi]]] FunctionalD
1
[QuantumField[\[Phi]]^2, QuantumField[\[Phi]]] FunctionalD
2 \phi
Instead of the usual (\delta \partial
_{\mu} \phi (x) )/ \delta \phi (y)= \partial _{\mu}
\delta^{(D)}(x-y) the arguments are omitted, and the \partial_\mu operator is specified by default
to be an integration by parts operator, i.e. the right hand side will be
just Null
or, more precisely, (by default) -\partial _{mu }.
[QuantumField[FCPartialD[LorentzIndex[\[Mu]]], \[Phi]], QuantumField[\[Phi]]] FunctionalD
-\vec{\partial }_{\mu }
[FCPartialD[LorentzIndex[\[Mu]]], \[Phi]] . QuantumField[FCPartialD[LorentzIndex[\[Mu]]]
(QuantumField, \[Phi]] - m^2 QuantumField[\[Phi]] . QuantumField[\[Phi]])/2
[%, QuantumField[\[Phi]]] FunctionalD
\frac{1}{2} \left(\left(\left.(\partial _{\mu }\phi \right)\right).\left(\left.(\partial _{\mu }\phi \right)\right)-m^2 \phi .\phi \right)
m^2 (-\phi )-\left(\partial _{\mu }\partial _{\mu }\phi \right)
Consider S[A] = -\int d^D x \frac{1}{4} F_a^{\mu \nu }(x) F_{\mu \nu }(x)
First approach:
= FieldStrength[\[Mu], \[Nu], a, {A, b, c}, 1, Explicit -> True]
F1
= FieldStrength[\[Mu], \[Nu], a, {A, d, e}, 1, Explicit -> True]
F2
S[A] = -1/4 F1 . F2
f^{abc} A_{\mu }^b.A_{\nu }^c+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)
f^{ade} A_{\mu }^d.A_{\nu }^e+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)
-\frac{1}{4} \left(f^{abc} A_{\mu }^b.A_{\nu }^c+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)\right).\left(f^{ade} A_{\mu }^d.A_{\nu }^e+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)\right)
In order to derive the equation of motion, the functional derivative of S with respect to A_{\sigma }^g has to be set to zero. Bearing in mind that for FeynCalc we have to be precise as to where which operators (coming from the substitution of the derivative of the delta function) act.
Act with the functional derivative operator on the first field strength:
0 = (\delta S) / ( \delta A_ {\sigma }^g(y) ) =-2/4 \int d^D x (\delta / (\delta A_ {\sigma }^g (y) ) F^a_{\mu \nu}(x)) F_a^{\mu \nu} (x)
See what happens with just (\delta S[A]) / (\delta A_{\sigma }^g)
= QuantumField[A, {\[Sigma]}, {g}] Ag
A_{\sigma }^g
[F1, Ag] FunctionalD
A_{\mu }^b \bar{g}^{\nu \sigma } f^{abg}-A_{\nu }^c \bar{g}^{\mu \sigma } f^{acg}+\delta ^{ag} \vec{\partial }_{\mu } \left(-\bar{g}^{\nu \sigma }\right)+\delta ^{ag} \vec{\partial }_{\nu } \bar{g}^{\mu \sigma }
Use FCCanonicalizeDummyIndices
to minimize the number of
dummy indices.
= FCCanonicalizeDummyIndices[%, SUNIndexNames -> {c1}] /. c1 -> c t1
A_{\mu }^c \bar{g}^{\nu \sigma } f^{acg}-A_{\nu }^c \bar{g}^{\mu \sigma } f^{acg}+\delta ^{ag} \vec{\partial }_{\mu } \left(-\bar{g}^{\nu \sigma }\right)+\delta ^{ag} \vec{\partial }_{\nu } \bar{g}^{\mu \sigma }
Instead of inserting the definition for the second F_a^{\mu \nu}, introduce a
QuantumField
object with antisymmetry built into the
Lorentz indices:
F /: QuantumField[pard___, F, \[Beta]_, \[Alpha]_, s_] := -QuantumField[pard, F, \[Alpha], \[Beta], s] /; ! OrderedQ[{\[Beta], \[Alpha]}]
[F, {\[Mu], \[Nu]}, {a}]
QuantumField
% /. {\[Mu] :> \[Nu], \[Nu] :> \[Mu]}
F_{\mu \nu }^a
-F_{\mu \nu }^a
= Contract[ExpandPartialD[-1/2 t1 . QuantumField[F, LorentzIndex[\[Mu]], LorentzIndex[\[Nu]],
t2 [a]]]] /. Dot -> Times SUNIndex
-\frac{1}{2} A_{\mu }^c f^{acg} F_{\mu \sigma }^a-\frac{1}{2} A_{\nu }^c f^{acg} F_{\nu \sigma }^a+\frac{1}{2} \left(\left.(\partial _{\mu }F_{\mu \sigma }^g\right)\right)+\frac{1}{2} \left(\left.(\partial _{\nu }F_{\nu \sigma }^g\right)\right)
= FCCanonicalizeDummyIndices[t2, LorentzIndexNames -> {mu}, SUNIndexNames -> {aa,
t3 }] /. {mu -> \[Mu], aa -> a, cc -> c} cc
A_{\mu }^a f^{acg} F_{\mu \sigma }^c+\left.(\partial _{\mu }F_{\mu \sigma }^g\right)
= FCE[t3] /. SUNF[a, c, g] -> -SUNF[g, c, a] t4
\left.(\partial _{\mu }F_{\mu \sigma }^g\right)-A_{\mu }^a f^{gca} F_{\mu \sigma }^c
Since the variational derivative vanishes t4
implies
that 0= D_{\mu} F_g^{\mu \sigma }
Second approach:
It is of course also possible to do the functional derivative on the S[A] with both field strength tensors inserted.
S[A]
-\frac{1}{4} \left(f^{abc} A_{\mu }^b.A_{\nu }^c+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)\right).\left(f^{ade} A_{\mu }^d.A_{\nu }^e+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)\right)
= FunctionalD[S[A], Ag] r1
-\frac{1}{4} f^{abc} f^{adg} A_{\mu }^b.A_{\sigma }^c.A_{\mu }^d+\frac{1}{4} f^{abc} f^{aeg} A_{\sigma }^b.A_{\nu }^c.A_{\nu }^e-\frac{1}{4} f^{abg} f^{ade} A_{\mu }^b.A_{\mu }^d.A_{\sigma }^e-\frac{1}{4} f^{abg} A_{\mu }^b.\left(\left.(\partial _{\mu }A_{\sigma }^a\right)\right)+\frac{1}{4} f^{abg} A_{\mu }^b.\left(\left.(\partial _{\sigma }A_{\mu }^a\right)\right)+\frac{1}{4} f^{acg} f^{ade} A_{\nu }^c.A_{\sigma }^d.A_{\nu }^e-\frac{1}{4} f^{acg} A_{\nu }^c.\left(\left.(\partial _{\nu }A_{\sigma }^a\right)\right)+\frac{1}{4} f^{acg} A_{\nu }^c.\left(\left.(\partial _{\sigma }A_{\nu }^a\right)\right)-\frac{1}{4} f^{adg} \left(\left.(\partial _{\mu }A_{\sigma }^a\right)\right).A_{\mu }^d+\frac{1}{4} f^{adg} \left(\left.(\partial _{\sigma }A_{\mu }^a\right)\right).A_{\mu }^d-\frac{1}{4} f^{aeg} \left(\left.(\partial _{\nu }A_{\sigma }^a\right)\right).A_{\nu }^e+\frac{1}{4} f^{aeg} \left(\left.(\partial _{\sigma }A_{\nu }^a\right)\right).A_{\nu }^e+\frac{1}{4} f^{bcg} A_{\mu }^b.\left(\left.(\partial _{\mu }A_{\sigma }^c\right)\right)+\frac{1}{4} f^{bcg} \left(\left.(\partial _{\mu }A_{\mu }^b\right)\right).A_{\sigma }^c-\frac{1}{4} f^{bcg} A_{\sigma }^b.\left(\left.(\partial _{\nu }A_{\nu }^c\right)\right)-\frac{1}{4} f^{bcg} \left(\left.(\partial _{\nu }A_{\sigma }^b\right)\right).A_{\nu }^c+\frac{1}{4} f^{deg} A_{\mu }^d.\left(\left.(\partial _{\mu }A_{\sigma }^e\right)\right)+\frac{1}{4} f^{deg} \left(\left.(\partial _{\mu }A_{\mu }^d\right)\right).A_{\sigma }^e-\frac{1}{4} f^{deg} A_{\sigma }^d.\left(\left.(\partial _{\nu }A_{\nu }^e\right)\right)-\frac{1}{4} f^{deg} \left(\left.(\partial _{\nu }A_{\sigma }^d\right)\right).A_{\nu }^e+\frac{1}{2} \left(\partial _{\mu }\partial _{\mu }A_{\sigma }^g\right)-\frac{1}{2} \left(\partial _{\mu }\partial _{\sigma }A_{\mu }^g\right)+\frac{1}{2} \left(\partial _{\nu }\partial _{\nu }A_{\sigma }^g\right)-\frac{1}{2} \left(\partial _{\nu }\partial _{\sigma }A_{\nu }^g\right)
This is just functional derivation and partial integration and simple contraction of indices. At first no attempt is made to rename dummy indices (since this is difficult in general).
With a general replacement rule only valid for commuting fields the color indices can be canonicalized a bit more. The idea is to use the commutative properties of the vector fields, and canonicalize the color indices by a trick.
[QuantumField[aaa___FCPartialD, A, bbb__], QuantumField[ccc___FCPartialD, A,
Commutatorddd__]] = 0;
= r1 // DotSimplify // FCCanonicalizeDummyIndices[#, SUNIndexNames -> {a1, b1, c1, d1},
r2 -> {mu, nu, rho}] & // ReplaceAll[#, {a1 -> a, b1 -> b, c1 -> c,
LorentzIndexNames -> d, mu -> \[Mu], nu -> \[Nu], rho -> \[Rho]}] & // Collect2[#, SUNF] & d1
\frac{1}{2} f^{adg} f^{bcd} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c+\frac{1}{2} f^{acd} f^{bdg} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c+f^{abg} \left(2 A_{\mu }^a.\left(\left.(\partial _{\mu }A_{\sigma }^b\right)\right)-A_{\mu }^a.\left(\left.(\partial _{\sigma }A_{\mu }^b\right)\right)-A_{\sigma }^a.\left(\left.(\partial _{\mu }A_{\mu }^b\right)\right)\right)+\left(\partial _{\mu }\partial _{\mu }A_{\sigma }^g\right)-\left(\partial _{\mu }\partial _{\sigma }A_{\mu }^g\right)
Inspection reveals that still terms are the same. Gather the terms
with two f
’s:
= Select[r2 // Expand, Count[#, SUNF[__]] === 2 &] twof
\frac{1}{2} f^{adg} f^{bcd} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c+\frac{1}{2} f^{acd} f^{bdg} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c
= ((twof[[1]] /. {a -> b, b -> a}) + twof[[2]]) // DotSimplify twofnew
f^{acd} f^{bdg} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c
= r2 - twof + twofnew r3
f^{acd} f^{bdg} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c+f^{abg} \left(2 A_{\mu }^a.\left(\left.(\partial _{\mu }A_{\sigma }^b\right)\right)-A_{\mu }^a.\left(\left.(\partial _{\sigma }A_{\mu }^b\right)\right)-A_{\sigma }^a.\left(\left.(\partial _{\mu }A_{\mu }^b\right)\right)\right)+\left(\partial _{\mu }\partial _{\mu }A_{\sigma }^g\right)-\left(\partial _{\mu }\partial _{\sigma }A_{\mu }^g\right)
Check that this is now indeed the same as the t4
result
from the first attempt.
t4
\left.(\partial _{\mu }F_{\mu \sigma }^g\right)-A_{\mu }^a f^{gca} F_{\mu \sigma }^c
= RightPartialD[\[Mu]] . FieldStrength[\[Mu], \[Sigma], g, {A, a, b}, 1] +
w0 [A, LorentzIndex[\[Mu]], SUNIndex[c]] . FieldStrength[\[Mu], \[Sigma], a,
QuantumField{A, b, d}, 1] SUNF[g, c, a]
f^{gca} A_{\mu }^c.F_{\mu \sigma }^{a\{A,b,d\}1}+\vec{\partial }_{\mu }.F_{\mu \sigma }^{g\{A,a,b\}1}
= Explicit[w0] w1
f^{gca} A_{\mu }^c.\left(f^{abd} A_{\mu }^b.A_{\sigma }^d+\left.(\partial _{\mu }A_{\sigma }^a\right)-\left.(\partial _{\sigma }A_{\mu }^a\right)\right)+\vec{\partial }_{\mu }.\left(f^{gab} A_{\mu }^a.A_{\sigma }^b+\left.(\partial _{\mu }A_{\sigma }^g\right)-\left.(\partial _{\sigma }A_{\mu }^g\right)\right)
= ExpandPartialD[w1] // DotSimplify w2
-f^{abd} f^{acg} A_{\mu }^b.A_{\mu }^c.A_{\sigma }^d+f^{abg} A_{\mu }^a.\left(\left.(\partial _{\mu }A_{\sigma }^b\right)\right)+f^{abg} A_{\sigma }^b.\left(\left.(\partial _{\mu }A_{\mu }^a\right)\right)-f^{acg} A_{\mu }^c.\left(\left.(\partial _{\mu }A_{\sigma }^a\right)\right)+f^{acg} A_{\mu }^c.\left(\left.(\partial _{\sigma }A_{\mu }^a\right)\right)+\left(\partial _{\mu }\partial _{\mu }A_{\sigma }^g\right)-\left(\partial _{\mu }\partial _{\sigma }A_{\mu }^g\right)
= w2 - r3 dif1
-f^{abd} f^{acg} A_{\mu }^b.A_{\mu }^c.A_{\sigma }^d-f^{acd} f^{bdg} A_{\mu }^a.A_{\mu }^b.A_{\sigma }^c+f^{abg} A_{\mu }^a.\left(\left.(\partial _{\mu }A_{\sigma }^b\right)\right)-f^{abg} \left(2 A_{\mu }^a.\left(\left.(\partial _{\mu }A_{\sigma }^b\right)\right)-A_{\mu }^a.\left(\left.(\partial _{\sigma }A_{\mu }^b\right)\right)-A_{\sigma }^a.\left(\left.(\partial _{\mu }A_{\mu }^b\right)\right)\right)+f^{abg} A_{\sigma }^b.\left(\left.(\partial _{\mu }A_{\mu }^a\right)\right)-f^{acg} A_{\mu }^c.\left(\left.(\partial _{\mu }A_{\sigma }^a\right)\right)+f^{acg} A_{\mu }^c.\left(\left.(\partial _{\sigma }A_{\mu }^a\right)\right)
As expected:
// FCCanonicalizeDummyIndices dif1
0
Finally, unset the commutator of the bosonic fields.
[QuantumField[aaa___FCPartialD, A, bbb__],
UnDeclareCommutator[ccc___FCPartialD, A, ddd__]] = 0; QuantumField