FieldStrength[mu, nu, a]
is the field strength tensor
\partial _{\mu } A_{\nu }^a - \partial _{\nu }
A_{\mu }^a + g_s A_{\mu }^b A_{\nu }^c f^{abc}.
FieldStrength[mu, nu]
is the field strength tensor (\partial _{\mu } A_{\nu}- \partial_{\nu }
A_{\mu}).
The name of the field (A) and the
coupling constant (g) can be set
through the options or by additional arguments. The first two indices
are interpreted as type LorentzIndex
, except
OPEDelta
, which is converted to
Momentum[OPEDelta]
.
[\[Mu], \[Nu]] FieldStrength
F_{\mu \nu }^{}
[\[Mu], \[Nu], a] FieldStrength
F_{\mu \nu }^a
[\[Mu], \[Nu], Explicit -> True] FieldStrength
\left.(\partial _{\mu }A_{\nu }\right)-\left.(\partial _{\nu }A_{\mu }\right)
[\[Mu], \[Nu], a, Explicit -> True] FieldStrength
g_s f^{a\text{b19}\;\text{c20}} A_{\mu }^{\text{b19}}.A_{\nu }^{\text{c20}}+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)
[\[Mu], \[Nu], a, CouplingConstant -> -SMP["g_s"], Explicit -> True] FieldStrength
-g_s f^{a\text{b21}\;\text{c22}} A_{\mu }^{\text{b21}}.A_{\nu }^{\text{c22}}+\left.(\partial _{\mu }A_{\nu }^a\right)-\left.(\partial _{\nu }A_{\mu }^a\right)