FeynmanIntegralPrefactor
is an option for
FCFeynmanParametrize
and other functions. It denotes an
implicit prefactor that has to be understood in front of a loop integral
in the usual FeynAmpDenominator
-notation. The prefactor is
the quantity that multiplies the loop integral measure d^D q_1 \ldots d^D q_n and plays an important
role e.g. when deriving the Feynman parameter representation of the
given integral. Apart from specifying an explicit value, the user may
also choose from the following predefined conventions:
The standard value is “Multiloop1”.
Overview, FCFeynmanParametrize.
[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}] FCFeynmanParametrize
\left\{(x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon },\Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon}]
FCFeynmanParametrize
Times @@ Most[%]
\left\{(x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon },\Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
\Gamma (\varepsilon ) (x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon }
[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FCFeynmanParametrize-> "Multiloop1"]
FeynmanIntegralPrefactor
Times @@ Most[%]
\left\{(x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon },\Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
\Gamma (\varepsilon ) (x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon }
[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FCFeynmanParametrize-> "Unity"]
FeynmanIntegralPrefactor
Times @@ Most[%]
\left\{(x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon },i \pi ^{2-\varepsilon } \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
i \pi ^{2-\varepsilon } \Gamma (\varepsilon ) (x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon }
[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FCFeynmanParametrize-> "Textbook"]
FeynmanIntegralPrefactor
Times @@ Most[%]
\left\{(x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon },i 2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
i 2^{2 \varepsilon -4} \pi ^{\varepsilon -2} \Gamma (\varepsilon ) (x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon }
[FAD[p, p - q], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FCFeynmanParametrize-> "Multiloop2"]
FeynmanIntegralPrefactor
Times @@ Most[%]
\left\{(x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon },e^{\gamma \varepsilon } \Gamma (\varepsilon ),\{x(1),x(2)\}\right\}
e^{\gamma \varepsilon } \Gamma (\varepsilon ) (x(1)+x(2))^{2 \varepsilon -2} \left(-q^2 x(1) x(2)\right)^{-\varepsilon }
[FAD[{p, m}], {p}, Names -> x, FCReplaceD -> {D -> 4 - 2 Epsilon},
FCFeynmanParametrize-> "Multiloop2"]
FeynmanIntegralPrefactor
Times @@ Most[%]
Series[%, {Epsilon, 0, 1}] // Normal // FunctionExpand
\left\{1,-e^{\gamma \varepsilon } \Gamma (\varepsilon -1) \left(m^2\right)^{1-\varepsilon },\{\}\right\}
-e^{\gamma \varepsilon } \Gamma (\varepsilon -1) \left(m^2\right)^{1-\varepsilon }
\frac{m^2}{\varepsilon }+\frac{1}{12} \varepsilon \left(\pi ^2 m^2+12 m^2+6 m^2 \log ^2\left(m^2\right)-12 m^2 \log \left(m^2\right)\right)+m^2+m^2 \left(-\log \left(m^2\right)\right)