FCPermuteMomentaRules[{p1, p2, ...}]
returns a set of
rules that contain all possible permutations of the momenta
p1
, p2
, … . This can be useful when working
with amplitudes that exhibit a symmetry in some or all of the final
state momenta or when trying to find mappings between loop integrals
from different topologies.
[{p1, p2}]
FCPermuteMomentaRules
f[p1, p2] /. %
\{\{\},\{\text{p1}\to \;\text{p2},\text{p2}\to \;\text{p1}\}\}
\{f(\text{p1},\text{p2}),f(\text{p2},\text{p1})\}
[{p1, p2, p3}]
FCPermuteMomentaRules
f[p1, p2, p3] /. %
\{\{\},\{\text{p1}\to \;\text{p2},\text{p2}\to \;\text{p1}\},\{\text{p1}\to \;\text{p3},\text{p3}\to \;\text{p1}\},\{\text{p2}\to \;\text{p3},\text{p3}\to \;\text{p2}\},\{\text{p1}\to \;\text{p2},\text{p2}\to \;\text{p3},\text{p3}\to \;\text{p1}\},\{\text{p1}\to \;\text{p3},\text{p2}\to \;\text{p1},\text{p3}\to \;\text{p2}\}\}
\{f(\text{p1},\text{p2},\text{p3}),f(\text{p2},\text{p1},\text{p3}),f(\text{p3},\text{p2},\text{p1}),f(\text{p1},\text{p3},\text{p2}),f(\text{p2},\text{p3},\text{p1}),f(\text{p3},\text{p1},\text{p2})\}