FCPartialFractionForm[n, {{f1,x-r1,p1},{f2,x-r2,p2}, ...}, x]
is a special way of representing sums of rational functions of
x
given by n +
\frac{f_1}{[x-r_1]^p_1} + \frac{f_2}{[x-r_2]^p_2} + \ldots
It is inspired by the parfrac
form from Maple and its
usage in E. Panzer’s HyperInt for the integration of multiple
polylogarithms.
Use ToFCPartialFractionForm
to convert the given
expression to this notation and FromFCPartialFractionForm
to return back to the usual representation.
Overview, ToFCPartialFractionForm, FromFCPartialFractionForm.
Apart[c + x^2/(x - 1), x]
c+x+\frac{1}{x-1}+1
= ToFCPartialFractionForm[c + x^2/(x - 1), x] ex1
\text{FCPartialFractionForm}\left(c+x+1,\left( \begin{array}{cc} \{x-1,-1\} & 1 \\ \end{array} \right),x\right)
[ex1] FromFCPartialFractionForm
c+x+\frac{1}{x-1}+1
= ToFCPartialFractionForm[(-64*(-1 + z^2))/(15*(1 + z^2 + z^4)), z] ex2
\text{FCPartialFractionForm}\left(0,\left( \begin{array}{cc} \left\{z-\sqrt[3]{-1},-1\right\} & -\frac{32}{15} \\ \left\{z+\sqrt[3]{-1},-1\right\} & \frac{32}{15} \\ \left\{z-(-1)^{2/3},-1\right\} & \frac{32}{15} \\ \left\{z+(-1)^{2/3},-1\right\} & -\frac{32}{15} \\ \end{array} \right),z\right)
[ex2] FromFCPartialFractionForm
\frac{32}{15 \left(z+\sqrt[3]{-1}\right)}+\frac{32}{15 \left(z-(-1)^{2/3}\right)}-\frac{32}{15 \left(z+(-1)^{2/3}\right)}-\frac{32}{15 \left(z-\sqrt[3]{-1}\right)}
[ex2, Factoring -> Simplify] FromFCPartialFractionForm
-\frac{64 \left(z^2-1\right)}{15 \left(z^4+z^2+1\right)}