FCLoopGLILowerDimension[gli, topo]
lowers the dimension
of the given GLI
from D
to D-2
and expresses it in terms of D
-dimensional loop integrals
returned in the output.
The algorithm is based on the code of the function
RaisingDRR
from R. Lee’s LiteRed
Overview, FCLoopGLIRaiseDimension.
= FCTopology[
topo , {SFAD[p1], SFAD[p2], SFAD[Q - p1 - p2], SFAD[Q - p2],
topo1[Q - p1]}, {p1, p2}, {Q}, {Hold[SPD[Q]] -> qq}, {}] SFAD
\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\text{Hold}[\text{SPD}(Q)]\to \;\text{qq}\},\{\}\right)
[GLI[topo1, {1, 1, 1, 1, 1}], topo] FCLoopGLILowerDimension
G^{\text{topo1}}(1,1,1,2,2)+G^{\text{topo1}}(1,1,2,1,2)+G^{\text{topo1}}(1,1,2,2,1)+G^{\text{topo1}}(1,2,1,1,2)+G^{\text{topo1}}(1,2,2,1,1)+G^{\text{topo1}}(2,1,1,2,1)+G^{\text{topo1}}(2,1,2,1,1)+G^{\text{topo1}}(2,2,1,1,1)
[GLI[topo1, {n1, n2, n3, 1, 1}], topo] FCLoopGLILowerDimension
G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},2,2)+\text{n3} G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,1,2)+\text{n3} G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,2,1)+\text{n2} G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3},1,2)+\text{n2} \;\text{n3} G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3}+1,1,1)+\text{n1} G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3},2,1)+\text{n1} \;\text{n3} G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3}+1,1,1)+\text{n1} \;\text{n2} G^{\text{topo1}}(\text{n1}+1,\text{n2}+1,\text{n3},1,1)