FCLoopGLILowerDimension
FCLoopGLILowerDimension[gli, topo]
lowers the dimension
of the given GLI
from D
to D-2
and expresses it in terms of D
-dimensional loop integrals
returned in the output.
The algorithm is based on the code of the function
RaisingDRR
from R. Lee’s LiteRed
See also
Overview, FCLoopGLIRaiseDimension.
Examples
topo = FCTopology[
topo1, {SFAD[p1], SFAD[p2], SFAD[Q - p1 - p2], SFAD[Q - p2],
SFAD[Q - p1]}, {p1, p2}, {Q}, {Hold[SPD[Q]] -> qq}, {}]
FCTopology(topo1,{(p12+iη)1,(p22+iη)1,((−p1−p2+Q)2+iη)1,((Q−p2)2+iη)1,((Q−p1)2+iη)1},{p1,p2},{Q},{Hold[SPD(Q)]→qq},{})
FCLoopGLILowerDimension[GLI[topo1, {1, 1, 1, 1, 1}], topo]
Gtopo1(1,1,1,2,2)+Gtopo1(1,1,2,1,2)+Gtopo1(1,1,2,2,1)+Gtopo1(1,2,1,1,2)+Gtopo1(1,2,2,1,1)+Gtopo1(2,1,1,2,1)+Gtopo1(2,1,2,1,1)+Gtopo1(2,2,1,1,1)
FCLoopGLILowerDimension[GLI[topo1, {n1, n2, n3, 1, 1}], topo]
Gtopo1(n1,n2,n3,2,2)+n3Gtopo1(n1,n2,n3+1,1,2)+n3Gtopo1(n1,n2,n3+1,2,1)+n2Gtopo1(n1,n2+1,n3,1,2)+n2n3Gtopo1(n1,n2+1,n3+1,1,1)+n1Gtopo1(n1+1,n2,n3,2,1)+n1n3Gtopo1(n1+1,n2,n3+1,1,1)+n1n2Gtopo1(n1+1,n2+1,n3,1,1)