FCLoopFindSubtopologies[topo] finds all scalefull
subtopologies of the FCTopology topo.
Each subtopology receives a marker that specifies the topology from
which it was derived. The symbol denoting the marker is specified via
the option SubtopologyMarker. Setting it to
False will disable the inclusion of the markers
Overview, FCTopology, FCLoopFindTopologies, FCLoopFindTopologyMappings, SubtopologyMarker.
res = FCLoopFindSubtopologies[FCTopology[TRI, {SFAD[{{p1, 0}, {0, 1}, 1}],
SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1 + Q1, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + Q1, 0},
{0, 1}, 1}], SFAD[{{-p1 + Q2, 0}, {0, 1}, 1}], SFAD[{{-p1 - p2 + Q2, 0}, {0, 1}, 1}]},
{p1, p2}, {Q1, Q2}, {}, {}]];res // Length19
Show the first three subtopologies of this 2-loop self-energy topology
res[[1 ;; 3]]\left\{\text{FCTopology}\left(\text{TRI},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{\text{Q1},\text{Q2}\},\{\},\{\}\right),\text{FCTopology}\left(\text{TRIR1},\left\{\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{\text{Q1},\text{Q2}\},\{\},\{\text{FCGV}(\text{SubtopologyOf})\to \;\text{TRI}\}\right),\text{FCTopology}\left(\text{TRIR2},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p1}+\text{Q1})^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{Q1})^2+i \eta )},\frac{1}{((\text{Q2}-\text{p1})^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+\text{Q2})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{\text{Q1},\text{Q2}\},\{\},\{\text{FCGV}(\text{SubtopologyOf})\to \;\text{TRI}\}\right)\right\}
res = FCLoopFindSubtopologies[FCTopology[topo1, {SFAD[{{p3, 0}, {0, 1}, 1}],
SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1, 0}, {0, 1}, 1}],
SFAD[{{p2 + p3, 0}, {0, 1}, 1}], SFAD[{{p2 - Q, 0}, {0, 1}, 1}],
SFAD[{{p1 - Q, 0}, {0, 1}, 1}], SFAD[{{p2 + p3 - Q, 0}, {0, 1}, 1}],
SFAD[{{p1 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3 - Q, 0},
{0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}], FCE -> True];res // Length36
Show the first three subtopologies of this 3-loop self-energy topology
res[[1 ;; 3]]\left\{\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right),\text{FCTopology}\left(\text{topo1R1},\left\{\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\text{FCGV}(\text{SubtopologyOf})\to \;\text{topo1}\}\right),\text{FCTopology}\left(\text{topo1R2},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\text{FCGV}(\text{SubtopologyOf})\to \;\text{topo1}\}\right)\right\}