FCLoopCreateRuleGLIToGLI[topology1, topology2]
creates a
GLI replacement rule assuming that the topology2
is a
subtopology of topology1
. Both topologies must be given as
FCTopology
objects.
It is also possible to use
FCLoopCreateRuleGLIToGLI[topo1, {subtopo1, subtopo2, ...}]
provided that {subtopo1, subtopo2, ...}
are subtopologies
of topo1
that were obtained by removing some propagators
from topo1
and not performing any loop momentum shifts
afterwards.
Furthermore, when working with lists of topologies one can write
FCLoopCreateRuleGLIToGLI[{topo1, topo2, ...}, {{subtopo11, subtopo12, ...}, {subtopo21, subtopo22, ...}, ..}]
.
Overview, FCTopology, GLI, FCLoopFindTopologies, FCLoopFindTopologyMappings.
[FCTopology[topo1, {SFAD[p]}], FCTopology[topo2, {SFAD[p]}]] FCLoopCreateRuleGLIToGLI
G^{\text{topo2}}(\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1})
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1},0)
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[q], SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n2$\_$},\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1},\text{n2})
[FCTopology[topo1, {SFAD[r], SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n2$\_$}):\to G^{\text{topo1}}(0,\text{n2},0)
[FCTopology["tmpTopo4",
FCLoopCreateRuleGLIToGLI{SFAD[{{0, (k1 + k2) . nb}, {0, 1}, 1}], SFAD[{{0, (k1 - k3) . n}, {0, 1}, 1}],
[{{0, n . (-k1 - k2 + q)}, {0, 1}, 1}], SFAD[{{0, nb . (-k1 + k3 + q)}, {0, 1}, 1}],
SFAD[{{-k1, 0}, {0, 1}, 1}], SFAD[{{k2, 0}, {0, 1}, 1}], SFAD[{{k1 + k2, 0}, {0, 1}, 1}],
SFAD[{{-k3, 0}, {0, 1}, 1}], SFAD[{{-k1 + k3, 0}, {0, 1}, 1}],
SFAD[{{k1 - k3 - q, 0}, {0, 1}, 1}], SFAD[{{k1 + k2 - k3 - q, 0}, {0, 1}, 1}],
SFAD[{{-k1 - k2 + q, 0}, {0, 1}, 1}]}],
SFAD
["tmpTopo18", {SFAD[{{0, (k1 + k2) . nb}, {0, 1}, 1}],
FCTopology[{{0, n . (-k1 - k2 + q)}, {0, 1}, 1}], SFAD[{{0, nb . (-k1 + k3 + q)}, {0, 1}, 1}],
SFAD[{{-k1, 0}, {0, 1}, 1}], SFAD[{{k2, 0}, {0, 1}, 1}],
SFAD[{{k1 + k2, 0}, {0, 1}, 1}], SFAD[{{-k3, 0}, {0, 1}, 1}],
SFAD[{{-k1 + k3, 0}, {0, 1}, 1}], SFAD[{{k1 - k3 - q, 0}, {0, 1}, 1}],
SFAD[{{k1 + k2 - k3 - q, 0}, {0, 1}, 1}], SFAD[{{-k1 - k2 + q, 0}, {0, 1}, 1}]}]] SFAD
G^{\text{tmpTopo18}}(\text{n1$\_$},\text{n3$\_$},\text{n4$\_$},\text{n5$\_$},\text{n6$\_$},\text{n7$\_$},\text{n8$\_$},\text{n9$\_$},\text{n10$\_$},\text{n11$\_$},\text{n12$\_$}):\to G^{\text{tmpTopo4}}(\text{n1},0,\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9},\text{n10},\text{n11},\text{n12})
[FCTopology["tad2l", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - p2, m3}]},
FCLoopIntegralToGraph{p1, p2}, {}, {}, {}]]
\left\{\{1\to 2,1\to 2,1\to 2\},\left( \begin{array}{ccc} \;\text{p1} & 1 & -\text{m1}^2 \\ \;\text{p2} & 1 & -\text{m2}^2 \\ \;\text{p1}-\text{p2} & 1 & -\text{m3}^2 \\ \end{array} \right),\left\{\frac{1}{(\text{p1}^2-\text{m1}^2+i \eta )},\frac{1}{(\text{p2}^2-\text{m2}^2+i \eta )},\frac{1}{((\text{p1}-\text{p2})^2-\text{m3}^2+i \eta )}\right\},1\right\}
[
FCLoopCreateRuleGLIToGLI{FCTopology["prop2l", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - q, m3}], FAD[{p1 - q, m4}],
[{p1 - p2, m5}]}, {p1, p2}, {q}, {}, {}],
FAD["tad2l", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - p2, m3}]}, {p1, p2}, {}, {}, {}]}, {
FCTopology{
["prop2lX1", {FAD[{p2, m2}], FAD[{p1 - q, m3}], FAD[{p1 - q, m4}], FAD[{p1 - p2, m5}]},
FCTopology{p1, p2}, {q}, {}, {}],
["prop2lX5", {FAD[{p1, m1}], FAD[{p2, m2}], FAD[{p1 - q, m3}], FAD[{p1 - q, m4}]},
FCTopology{p1, p2}, {q}, {}, {}]
},
{
["tad2lX2", {FAD[{p1, m1}], FAD[{p1 - p2, m3}]}, {p1, p2}, {}, {}, {}],
FCTopology["tad2lX3", {FAD[{p1, m1}], FAD[{p2, m2}]}, {p1, p2}, {}, {}, {}]
FCTopology}
}]
\left\{\left\{G^{\text{prop2lX1}}(\text{n2$\_$},\text{n3$\_$},\text{n4$\_$},\text{n5$\_$}):\to G^{\text{prop2l}}(0,\text{n2},\text{n3},\text{n4},\text{n5}),G^{\text{prop2lX5}}(\text{n1$\_$},\text{n2$\_$},\text{n3$\_$},\text{n4$\_$}):\to G^{\text{prop2l}}(\text{n1},\text{n2},\text{n3},\text{n4},0)\right\},\left\{G^{\text{tad2lX2}}(\text{n1$\_$},\text{n3$\_$}):\to G^{\text{tad2l}}(\text{n1},0,\text{n3}),G^{\text{tad2lX3}}(\text{n1$\_$},\text{n2$\_$}):\to G^{\text{tad2l}}(\text{n1},\text{n2},0)\right\}\right\}
Using the option Reverse
we can also generate inverse
replacement rules
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[q], SFAD[p]}], Reverse -> True] FCTopology
G^{\text{topo1}}(\text{n1$\_$},\text{n2$\_$}):\to G^{\text{topo2}}(\text{n2},\text{n1})
[FCTopology[topo1, {SFAD[p], SFAD[q]}],
FCLoopCreateRuleGLIToGLI[topo2, {SFAD[p]}]] FCTopology
G^{\text{topo2}}(\text{n1$\_$}):\to G^{\text{topo1}}(\text{n1},0)