FCLoopBasisOverdeterminedQ[int, {q1, q2, ...}]
checks
whether the loop integral or topology int
contains linearly
dependent propagators.
The input can also consist of an FCTopology
object or a
list thereof.
Overview, FCLoopBasisIncompleteQ.
[{q1, m1}, {q1 - l + p, m}]
FAD
[%, {q1}] FCLoopBasisOverdeterminedQ
\frac{1}{\left(\text{q1}^2-\text{m1}^2\right).\left((-l+p+\text{q1})^2-m^2\right)}
\text{False}
[q1, {q1, m1}]
FAD
[%, {q1}] FCLoopBasisOverdeterminedQ
\frac{1}{\text{q1}^2.\left(\text{q1}^2-\text{m1}^2\right)}
\text{True}
[q1, q2, {q1 + l, m1}, {q1 - l, m1}, {q2 + l, m1}, {q2 - l, m1}]
FAD
[%, {q1, q2}] FCLoopBasisOverdeterminedQ
\frac{1}{\text{q1}^2.\text{q2}^2.\left((l+\text{q1})^2-\text{m1}^2\right).\left((\text{q1}-l)^2-\text{m1}^2\right).\left((l+\text{q2})^2-\text{m1}^2\right).\left((\text{q2}-l)^2-\text{m1}^2\right)}
\text{True}
[FCTopology[topo1, {FAD[p1], FAD[p2],
FCLoopBasisOverdeterminedQ[p1 - q], FAD[p2 - q], FAD[p1 - p2], FAD[p1 + p2 + q]}, {p1, p2}, {q}, {}, {}]] FAD
\text{True}
[{FCTopology[topo1, {FAD[p1], FAD[p2],
FCLoopBasisOverdeterminedQ[p1 - q], FAD[p2 - q], FAD[p1 - p2], FAD[p1 + p2 + q]}, {p1, p2}, {q}, {}, {}],
FAD[topo2, {FAD[p1], FAD[p2],
FCTopology[p1 - q], FAD[p2 - q], FAD[p1 - p2]}, {p1, p2}, {q}, {}, {}]
FAD}]
\{\text{True},\text{False}\}