FCLoopApplyTopologyMappings
FCLoopApplyTopologyMappings[expr, {mappings, topos}]
applies mappings between topologies obtained using
FCLoopFindTopologyMappings
to the output of
FCLoopFindTopologies
denoted as expr
. The
argument topos
denotes the final set of topologies present
in the expression.
Instead of {mappings, topos}
one can directly use the
output FCLoopFindTopologyMappings
.
By default the function will attempt to rewrite all the occurring
loop integrals as GLI
s. If you just want to apply the
mappings without touching the remaining scalar products, set the option
FCLoopCreateRulesToGLI
to False
. Even when all
scalar products depending on loop momenta are rewritten as
GLI
s, you can still suppress the step of multiplying out
products of GLI
s by setting the option
GLIMultiply
to False
.
See also
Overview , FCTopology , GLI , FCLoopFindTopologies , FCLoopFindTopologyMappings .
Examples
This is a trial expression representing some loop amplitude that has
already been processed using FCFindTopologies
ex = gliProduct[ cc6* SPD[ p1, p1], GLI[ fctopology1, { 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 }]] +
gliProduct[ cc2* SPD[ p1, p2], GLI[ fctopology2, { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }]] +
gliProduct[ cc4* SPD[ p1, p2], GLI[ fctopology4, { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }]] +
gliProduct[ cc1* SPD[ p1, Q ], GLI[ fctopology1, { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }]] +
gliProduct[ cc3* SPD[ p2, p2], GLI[ fctopology3, { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }]] +
gliProduct[ cc5* SPD[ p2, Q ], GLI[ fctopology5, { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }]]
gliProduct ( cc1 ( p1 ⋅ Q ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc2 ( p1 ⋅ p2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc3 p2 2 , G fctopology3 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc4 ( p1 ⋅ p2 ) , G fctopology4 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc5 ( p2 ⋅ Q ) , G fctopology5 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc6 p1 2 , G fctopology1 ( 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 ) ) \text{gliProduct}\left(\text{cc1}
(\text{p1}\cdot
Q),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc2}
(\text{p1}\cdot
\;\text{p2}),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc3}
\;\text{p2}^2,G^{\text{fctopology3}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc4}
(\text{p1}\cdot
\;\text{p2}),G^{\text{fctopology4}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc5}
(\text{p2}\cdot
Q),G^{\text{fctopology5}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc6}
\;\text{p1}^2,G^{\text{fctopology1}}(1,1,2,1,1,1,1,1,1)\right) gliProduct ( cc1 ( p1 ⋅ Q ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc2 ( p1 ⋅ p2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc3 p2 2 , G fctopology3 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc4 ( p1 ⋅ p2 ) , G fctopology4 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc5 ( p2 ⋅ Q ) , G fctopology5 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc6 p1 2 , G fctopology1 ( 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 ) )
These mapping rules describe how the 3 topologies “fctopology3”,
“fctopology4” and “fctopology5” are mapped to the topologies
“fctopology1” and “fctopology2”
mappings = {
{ FCTopology[ fctopology3, { SFAD[{{ p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2, 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 + p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p3, 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p2 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p3 - Q , 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1 + p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }]}, { p1, p2, p3}, { Q }, {}, {}], { p1 -> - p1 - p3 + Q , p2 -> - p2 - p3 + Q , p3 -> p3},
GLI[ fctopology3, { n1_ , n7_ , n8_ , n5_ , n6_ , n4_ , n2_ , n3_ , n9_ }] :>
GLI[ fctopology1, { n1, n2, n3, n4, n5, n6, n7, n8, n9}]},
{ FCTopology[ fctopology4, { SFAD[{{ p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1, 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p2 + p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 - Q , 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1 + p3 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }]}, { p1, p2, p3}, { Q }, {}, {}], { p1 -> - p2 + Q , p2 -> - p1 + Q , p3 -> - p3},
GLI[ fctopology4, { n1_ , n6_ , n5_ , n8_ , n7_ , n3_ , n2_ , n4_ , n9_ }] :>
GLI[ fctopology1, { n1, n2, n3, n4, n5, n6, n7, n8, n9}]},
{ FCTopology[ fctopology5, { SFAD[{{ p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1, 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1 + p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p3 - Q , 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1 + p2 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }]}, { p1, p2, p3}, { Q }, {}, {}], { p1 -> p2, p2 -> p1, p3 -> p3},
GLI[ fctopology5, { n1_ , n3_ , n2_ , n4_ , n6_ , n5_ , n7_ , n8_ , n9_ }] :>
GLI[ fctopology2, { n1, n2, n3, n4, n5, n6, n7, n8, n9}]}}
( FCTopology ( fctopology3 , { 1 ( p3 2 + i η ) , 1 ( p2 2 + i η ) , 1 ( p1 2 + i η ) , 1 ( ( p2 + p3 ) 2 + i η ) , 1 ( ( p1 + p3 ) 2 + i η ) , 1 ( ( p2 − Q ) 2 + i η ) , 1 ( ( p2 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p2 + p3 − Q ) 2 + i η ) } , { p1 , p2 , p3 } , { Q } , { } , { } ) { p1 → − p1 − p3 + Q , p2 → − p2 − p3 + Q , p3 → p3 } G fctopology3 ( n1 _ , n7 _ , n8 _ , n5 _ , n6 _ , n4 _ , n2 _ , n3 _ , n9 _ ) : → G fctopology1 ( n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 ) FCTopology ( fctopology4 , { 1 ( p3 2 + i η ) , 1 ( p2 2 + i η ) , 1 ( p1 2 + i η ) , 1 ( ( p2 + p3 ) 2 + i η ) , 1 ( ( p1 + p3 ) 2 + i η ) , 1 ( ( p2 − Q ) 2 + i η ) , 1 ( ( p1 − Q ) 2 + i η ) , 1 ( ( p1 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p2 + p3 − Q ) 2 + i η ) } , { p1 , p2 , p3 } , { Q } , { } , { } ) { p1 → Q − p2 , p2 → Q − p1 , p3 → − p3 } G fctopology4 ( n1 _ , n6 _ , n5 _ , n8 _ , n7 _ , n3 _ , n2 _ , n4 _ , n9 _ ) : → G fctopology1 ( n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 ) FCTopology ( fctopology5 , { 1 ( p3 2 + i η ) , 1 ( p2 2 + i η ) , 1 ( p1 2 + i η ) , 1 ( ( p1 + p3 ) 2 + i η ) , 1 ( ( p2 − Q ) 2 + i η ) , 1 ( ( p1 − Q ) 2 + i η ) , 1 ( ( p1 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p2 − Q ) 2 + i η ) , 1 ( ( p1 + p2 + p3 − Q ) 2 + i η ) } , { p1 , p2 , p3 } , { Q } , { } , { } ) { p1 → p2 , p2 → p1 , p3 → p3 } G fctopology5 ( n1 _ , n3 _ , n2 _ , n4 _ , n6 _ , n5 _ , n7 _ , n8 _ , n9 _ ) : → G fctopology2 ( n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 ) ) \left(
\begin{array}{ccc}
\;\text{FCTopology}\left(\text{fctopology3},\left\{\frac{1}{(\text{p3}^2+i
\eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p2}-Q)^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta
)}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)
& \{\text{p1}\to -\text{p1}-\text{p3}+Q,\text{p2}\to
-\text{p2}-\text{p3}+Q,\text{p3}\to \;\text{p3}\} &
G^{\text{fctopology3}}(\text{n1$\_$},\text{n7$\_$},\text{n8$\_$},\text{n5$\_$},\text{n6$\_$},\text{n4$\_$},\text{n2$\_$},\text{n3$\_$},\text{n9$\_$}):\to
G^{\text{fctopology1}}(\text{n1},\text{n2},\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9})
\\
\;\text{FCTopology}\left(\text{fctopology4},\left\{\frac{1}{(\text{p3}^2+i
\eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta
)}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)
& \{\text{p1}\to Q-\text{p2},\text{p2}\to Q-\text{p1},\text{p3}\to
-\text{p3}\} &
G^{\text{fctopology4}}(\text{n1$\_$},\text{n6$\_$},\text{n5$\_$},\text{n8$\_$},\text{n7$\_$},\text{n3$\_$},\text{n2$\_$},\text{n4$\_$},\text{n9$\_$}):\to
G^{\text{fctopology1}}(\text{n1},\text{n2},\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9})
\\
\;\text{FCTopology}\left(\text{fctopology5},\left\{\frac{1}{(\text{p3}^2+i
\eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta
)}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)
& \{\text{p1}\to \;\text{p2},\text{p2}\to \;\text{p1},\text{p3}\to
\;\text{p3}\} &
G^{\text{fctopology5}}(\text{n1$\_$},\text{n3$\_$},\text{n2$\_$},\text{n4$\_$},\text{n6$\_$},\text{n5$\_$},\text{n7$\_$},\text{n8$\_$},\text{n9$\_$}):\to
G^{\text{fctopology2}}(\text{n1},\text{n2},\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9})
\\
\end{array}
\right) FCTopology ( fctopology3 , { ( p3 2 + i η ) 1 , ( p2 2 + i η ) 1 , ( p1 2 + i η ) 1 , (( p2 + p3 ) 2 + i η ) 1 , (( p1 + p3 ) 2 + i η ) 1 , (( p2 − Q ) 2 + i η ) 1 , (( p2 + p3 − Q ) 2 + i η ) 1 , (( p1 + p3 − Q ) 2 + i η ) 1 , (( p1 + p2 + p3 − Q ) 2 + i η ) 1 } , { p1 , p2 , p3 } , { Q } , { } , { } ) FCTopology ( fctopology4 , { ( p3 2 + i η ) 1 , ( p2 2 + i η ) 1 , ( p1 2 + i η ) 1 , (( p2 + p3 ) 2 + i η ) 1 , (( p1 + p3 ) 2 + i η ) 1 , (( p2 − Q ) 2 + i η ) 1 , (( p1 − Q ) 2 + i η ) 1 , (( p1 + p3 − Q ) 2 + i η ) 1 , (( p1 + p2 + p3 − Q ) 2 + i η ) 1 } , { p1 , p2 , p3 } , { Q } , { } , { } ) FCTopology ( fctopology5 , { ( p3 2 + i η ) 1 , ( p2 2 + i η ) 1 , ( p1 2 + i η ) 1 , (( p1 + p3 ) 2 + i η ) 1 , (( p2 − Q ) 2 + i η ) 1 , (( p1 − Q ) 2 + i η ) 1 , (( p1 + p3 − Q ) 2 + i η ) 1 , (( p1 + p2 − Q ) 2 + i η ) 1 , (( p1 + p2 + p3 − Q ) 2 + i η ) 1 } , { p1 , p2 , p3 } , { Q } , { } , { } ) { p1 → − p1 − p3 + Q , p2 → − p2 − p3 + Q , p3 → p3 } { p1 → Q − p2 , p2 → Q − p1 , p3 → − p3 } { p1 → p2 , p2 → p1 , p3 → p3 } G fctopology3 ( n1_ , n7_ , n8_ , n5_ , n6_ , n4_ , n2_ , n3_ , n9_ ) :→ G fctopology1 ( n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 ) G fctopology4 ( n1_ , n6_ , n5_ , n8_ , n7_ , n3_ , n2_ , n4_ , n9_ ) :→ G fctopology1 ( n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 ) G fctopology5 ( n1_ , n3_ , n2_ , n4_ , n6_ , n5_ , n7_ , n8_ , n9_ ) :→ G fctopology2 ( n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 )
These are the two topologies onto which everything is mapped
finalTopos = {
FCTopology[ fctopology1, { SFAD[{{ p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 + p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 - Q , 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p3 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }]}, { p1, p2, p3}, { Q }, {}, {}],
FCTopology[ fctopology2, { SFAD[{{ p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 + p3, 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 - Q , 0 }, { 0 , 1 }, 1 }],
SFAD[{{ p1 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p2 - Q , 0 }, { 0 , 1 }, 1 }], SFAD[{{ p1 + p2 + p3 - Q , 0 }, { 0 , 1 }, 1 }]}, { p1, p2, p3}, { Q }, {}, {}]}
{ FCTopology ( fctopology1 , { 1 ( p3 2 + i η ) , 1 ( p2 2 + i η ) , 1 ( p1 2 + i η ) , 1 ( ( p2 + p3 ) 2 + i η ) , 1 ( ( p2 − Q ) 2 + i η ) , 1 ( ( p1 − Q ) 2 + i η ) , 1 ( ( p2 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p2 + p3 − Q ) 2 + i η ) } , { p1 , p2 , p3 } , { Q } , { } , { } ) , FCTopology ( fctopology2 , { 1 ( p3 2 + i η ) , 1 ( p2 2 + i η ) , 1 ( p1 2 + i η ) , 1 ( ( p2 + p3 ) 2 + i η ) , 1 ( ( p2 − Q ) 2 + i η ) , 1 ( ( p1 − Q ) 2 + i η ) , 1 ( ( p2 + p3 − Q ) 2 + i η ) , 1 ( ( p1 + p2 − Q ) 2 + i η ) , 1 ( ( p1 + p2 + p3 − Q ) 2 + i η ) } , { p1 , p2 , p3 } , { Q } , { } , { } ) } \left\{\text{FCTopology}\left(\text{fctopology1},\left\{\frac{1}{(\text{p3}^2+i
\eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta
)}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right),\text{FCTopology}\left(\text{fctopology2},\left\{\frac{1}{(\text{p3}^2+i
\eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3})^2+i \eta
)},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta
)},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}-Q)^2+i \eta
)},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta
)}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)\right\} { FCTopology ( fctopology1 , { ( p3 2 + i η ) 1 , ( p2 2 + i η ) 1 , ( p1 2 + i η ) 1 , (( p2 + p3 ) 2 + i η ) 1 , (( p2 − Q ) 2 + i η ) 1 , (( p1 − Q ) 2 + i η ) 1 , (( p2 + p3 − Q ) 2 + i η ) 1 , (( p1 + p3 − Q ) 2 + i η ) 1 , (( p1 + p2 + p3 − Q ) 2 + i η ) 1 } , { p1 , p2 , p3 } , { Q } , { } , { } ) , FCTopology ( fctopology2 , { ( p3 2 + i η ) 1 , ( p2 2 + i η ) 1 , ( p1 2 + i η ) 1 , (( p2 + p3 ) 2 + i η ) 1 , (( p2 − Q ) 2 + i η ) 1 , (( p1 − Q ) 2 + i η ) 1 , (( p2 + p3 − Q ) 2 + i η ) 1 , (( p1 + p2 − Q ) 2 + i η ) 1 , (( p1 + p2 + p3 − Q ) 2 + i η ) 1 } , { p1 , p2 , p3 } , { Q } , { } , { } ) }
FCLoopApplyTopologyMappings
applies the given mappings
to the expression creating an output that is ready to be processed
further
FCLoopApplyTopologyMappings[ ex, { mappings, finalTopos}, Head -> gliProduct, FCVerbose -> 0 ]
1 2 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ( cc1 Q 2 + cc4 Q 2 + 2 cc6 ) + 1 2 ( cc1 − cc4 ) G fctopology1 ( 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 ) − 1 2 ( cc1 − cc4 ) G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ) + 1 2 Q 2 ( cc2 + cc5 ) G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) − 1 2 ( cc2 + cc5 ) G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ) − 1 2 cc2 G fctopology2 ( 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 ) + 1 2 cc2 G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 ) + cc3 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 ) + 1 2 cc4 G fctopology1 ( 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) − 1 2 cc4 G fctopology1 ( 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 ) − 1 2 cc4 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 ) + 1 2 cc4 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ) + 1 2 cc5 G fctopology2 ( 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 ) \frac{1}{2}
G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1) \left(\text{cc1}
Q^2+\text{cc4} Q^2+2 \;\text{cc6}\right)+\frac{1}{2}
(\text{cc1}-\text{cc4})
G^{\text{fctopology1}}(1,1,0,1,1,1,1,1,1)-\frac{1}{2}
(\text{cc1}-\text{cc4})
G^{\text{fctopology1}}(1,1,1,1,1,0,1,1,1)+\frac{1}{2} Q^2
(\text{cc2}+\text{cc5})
G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)-\frac{1}{2}
(\text{cc2}+\text{cc5})
G^{\text{fctopology2}}(1,1,1,1,1,0,1,1,1)-\frac{1}{2} \;\text{cc2}
G^{\text{fctopology2}}(1,1,1,1,0,1,1,1,1)+\frac{1}{2} \;\text{cc2}
G^{\text{fctopology2}}(1,1,1,1,1,1,1,0,1)+\text{cc3}
G^{\text{fctopology1}}(1,1,1,1,1,1,0,1,1)+\frac{1}{2} \;\text{cc4}
G^{\text{fctopology1}}(0,1,1,1,1,1,1,1,1)-\frac{1}{2} \;\text{cc4}
G^{\text{fctopology1}}(1,1,1,0,1,1,1,1,1)-\frac{1}{2} \;\text{cc4}
G^{\text{fctopology1}}(1,1,1,1,1,1,1,0,1)+\frac{1}{2} \;\text{cc4}
G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,0)+\frac{1}{2} \;\text{cc5}
G^{\text{fctopology2}}(1,1,0,1,1,1,1,1,1) 2 1 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ( cc1 Q 2 + cc4 Q 2 + 2 cc6 ) + 2 1 ( cc1 − cc4 ) G fctopology1 ( 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 ) − 2 1 ( cc1 − cc4 ) G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ) + 2 1 Q 2 ( cc2 + cc5 ) G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) − 2 1 ( cc2 + cc5 ) G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 ) − 2 1 cc2 G fctopology2 ( 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 ) + 2 1 cc2 G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 ) + cc3 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 ) + 2 1 cc4 G fctopology1 ( 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) − 2 1 cc4 G fctopology1 ( 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 ) − 2 1 cc4 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 ) + 2 1 cc4 G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ) + 2 1 cc5 G fctopology2 ( 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 )
This just applies the mappings without any further
simplifications
FCLoopApplyTopologyMappings[ ex, { mappings, finalTopos}, Head -> gliProduct, FCLoopCreateRulesToGLI -> False ]
gliProduct ( cc3 ( − p2 − p3 + Q ) 2 , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc4 ( ( Q − p1 ) ⋅ ( Q − p2 ) ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc1 ( p1 ⋅ Q ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc2 ( p1 ⋅ p2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc5 ( p1 ⋅ Q ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc6 p1 2 , G fctopology1 ( 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 ) ) \text{gliProduct}\left(\text{cc3}
(-\text{p2}-\text{p3}+Q)^2,G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc4}
((Q-\text{p1})\cdot
(Q-\text{p2})),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc1}
(\text{p1}\cdot
Q),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc2}
(\text{p1}\cdot
\;\text{p2}),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc5}
(\text{p1}\cdot
Q),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc6}
\;\text{p1}^2,G^{\text{fctopology1}}(1,1,2,1,1,1,1,1,1)\right) gliProduct ( cc3 ( − p2 − p3 + Q ) 2 , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc4 (( Q − p1 ) ⋅ ( Q − p2 )) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc1 ( p1 ⋅ Q ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc2 ( p1 ⋅ p2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc5 ( p1 ⋅ Q ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc6 p1 2 , G fctopology1 ( 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 ) )
This applies the mappings and eliminates the numerators but still
keeps products of GLI
s in the expression
FCLoopApplyTopologyMappings[ ex, { mappings, finalTopos}, Head -> gliProduct, FCLoopCreateRulesToGLI -> True , GLIMultiply -> False ]
gliProduct ( 1 2 cc1 ( G fctopology1 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) + Q 2 ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( 1 2 cc2 ( − G fctopology2 ( 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 ) − G fctopology2 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) + G fctopology2 ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , − 1 , 0 ) + Q 2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc3 G fctopology1 ( 0 , 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc4 ( 1 2 ( − G fctopology1 ( 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) + G fctopology1 ( 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 ) − Q 2 ) + 1 2 ( − G fctopology1 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) + G fctopology1 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) − Q 2 ) + 1 2 ( G fctopology1 ( − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) + G fctopology1 ( 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , − 1 , 0 ) + G fctopology1 ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , − 1 ) + Q 2 ) + Q 2 ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( 1 2 cc5 ( G fctopology2 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) − G fctopology2 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) + Q 2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc6 G fctopology1 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , G fctopology1 ( 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 ) ) \text{gliProduct}\left(\frac{1}{2}
\;\text{cc1}
\left(G^{\text{fctopology1}}(0,0,-1,0,0,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,0,0,-1,0,0,0)+Q^2\right),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\frac{1}{2}
\;\text{cc2}
\left(-G^{\text{fctopology2}}(0,0,0,0,-1,0,0,0,0)-G^{\text{fctopology2}}(0,0,0,0,0,-1,0,0,0)+G^{\text{fctopology2}}(0,0,0,0,0,0,0,-1,0)+Q^2\right),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc3}
G^{\text{fctopology1}}(0,0,0,0,0,0,-1,0,0),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc4}
\left(\frac{1}{2}
\left(-G^{\text{fctopology1}}(0,-1,0,0,0,0,0,0,0)+G^{\text{fctopology1}}(0,0,0,0,-1,0,0,0,0)-Q^2\right)+\frac{1}{2}
\left(-G^{\text{fctopology1}}(0,0,-1,0,0,0,0,0,0)+G^{\text{fctopology1}}(0,0,0,0,0,-1,0,0,0)-Q^2\right)+\frac{1}{2}
\left(G^{\text{fctopology1}}(-1,0,0,0,0,0,0,0,0)+G^{\text{fctopology1}}(0,-1,0,0,0,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,-1,0,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,0,-1,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,0,0,0,0,-1,0)+G^{\text{fctopology1}}(0,0,0,0,0,0,0,0,-1)+Q^2\right)+Q^2\right),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\frac{1}{2}
\;\text{cc5}
\left(G^{\text{fctopology2}}(0,0,-1,0,0,0,0,0,0)-G^{\text{fctopology2}}(0,0,0,0,0,-1,0,0,0)+Q^2\right),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc6}
G^{\text{fctopology1}}(0,0,-1,0,0,0,0,0,0),G^{\text{fctopology1}}(1,1,2,1,1,1,1,1,1)\right) gliProduct ( 2 1 cc1 ( G fctopology1 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) + Q 2 ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( 2 1 cc2 ( − G fctopology2 ( 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 ) − G fctopology2 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) + G fctopology2 ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , − 1 , 0 ) + Q 2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc3 G fctopology1 ( 0 , 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc4 ( 2 1 ( − G fctopology1 ( 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) + G fctopology1 ( 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 ) − Q 2 ) + 2 1 ( − G fctopology1 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) + G fctopology1 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) − Q 2 ) + 2 1 ( G fctopology1 ( − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) + G fctopology1 ( 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 , 0 ) − G fctopology1 ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , − 1 , 0 ) + G fctopology1 ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , − 1 ) + Q 2 ) + Q 2 ) , G fctopology1 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( 2 1 cc5 ( G fctopology2 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) − G fctopology2 ( 0 , 0 , 0 , 0 , 0 , − 1 , 0 , 0 , 0 ) + Q 2 ) , G fctopology2 ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ) + gliProduct ( cc6 G fctopology1 ( 0 , 0 , − 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , G fctopology1 ( 1 , 1 , 2 , 1 , 1 , 1 , 1 , 1 , 1 ) )