FCLoopApplyTopologyMappings[expr, {mappings, topos}]
applies mappings between topologies obtained using
FCLoopFindTopologyMappings
to the output of
FCLoopFindTopologies
denoted as expr
. The
argument topos
denotes the final set of topologies present
in the expression.
Instead of {mappings, topos}
one can directly use the
output FCLoopFindTopologyMappings
.
By default the function will attempt to rewrite all the occurring
loop integrals as GLI
s. If you just want to apply the
mappings without touching the remaining scalar products, set the option
FCLoopCreateRulesToGLI
to False
. Even when all
scalar products depending on loop momenta are rewritten as
GLI
s, you can still suppress the step of multiplying out
products of GLI
s by setting the option
GLIMultiply
to False
.
Overview, FCTopology, GLI, FCLoopFindTopologies, FCLoopFindTopologyMappings.
This is a trial expression representing some loop amplitude that has
already been processed using FCFindTopologies
= gliProduct[cc6*SPD[p1, p1], GLI[fctopology1, {1, 1, 2, 1, 1, 1, 1, 1, 1}]] +
ex [cc2*SPD[p1, p2], GLI[fctopology2, {1, 1, 1, 1, 1, 1, 1, 1, 1}]] +
gliProduct[cc4*SPD[p1, p2], GLI[fctopology4, {1, 1, 1, 1, 1, 1, 1, 1, 1}]] +
gliProduct[cc1*SPD[p1, Q], GLI[fctopology1, {1, 1, 1, 1, 1, 1, 1, 1, 1}]] +
gliProduct[cc3*SPD[p2, p2], GLI[fctopology3, {1, 1, 1, 1, 1, 1, 1, 1, 1}]] +
gliProduct[cc5*SPD[p2, Q], GLI[fctopology5, {1, 1, 1, 1, 1, 1, 1, 1, 1}]] gliProduct
\text{gliProduct}\left(\text{cc1} (\text{p1}\cdot Q),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc2} (\text{p1}\cdot \;\text{p2}),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc3} \;\text{p2}^2,G^{\text{fctopology3}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc4} (\text{p1}\cdot \;\text{p2}),G^{\text{fctopology4}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc5} (\text{p2}\cdot Q),G^{\text{fctopology5}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc6} \;\text{p1}^2,G^{\text{fctopology1}}(1,1,2,1,1,1,1,1,1)\right)
These mapping rules describe how the 3 topologies “fctopology3”, “fctopology4” and “fctopology5” are mapped to the topologies “fctopology1” and “fctopology2”
= {
mappings {FCTopology[fctopology3, {SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p2, 0}, {0, 1}, 1}],
[{{p1, 0}, {0, 1}, 1}], SFAD[{{p2 + p3, 0}, {0, 1}, 1}], SFAD[{{p1 + p3, 0}, {0, 1}, 1}],
SFAD[{{p2 - Q, 0}, {0, 1}, 1}], SFAD[{{p2 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p3 - Q, 0}, {0, 1}, 1}],
SFAD[{{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}], {p1 -> -p1 - p3 + Q, p2 -> -p2 - p3 + Q, p3 -> p3},
SFAD[fctopology3, {n1_, n7_, n8_, n5_, n6_, n4_, n2_, n3_, n9_}] :>
GLI[fctopology1, {n1, n2, n3, n4, n5, n6, n7, n8, n9}]},
GLI
{FCTopology[fctopology4, {SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1, 0}, {0, 1}, 1}],
[{{p2 + p3, 0}, {0, 1}, 1}], SFAD[{{p1 + p3, 0}, {0, 1}, 1}], SFAD[{{p2 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 - Q, 0}, {0, 1}, 1}],
SFAD[{{p1 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}], {p1 -> -p2 + Q, p2 -> -p1 + Q, p3 -> -p3},
SFAD[fctopology4, {n1_, n6_, n5_, n8_, n7_, n3_, n2_, n4_, n9_}] :>
GLI[fctopology1, {n1, n2, n3, n4, n5, n6, n7, n8, n9}]},
GLI
{FCTopology[fctopology5, {SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1, 0}, {0, 1}, 1}],
[{{p1 + p3, 0}, {0, 1}, 1}], SFAD[{{p2 - Q, 0}, {0, 1}, 1}],SFAD[{{p1 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p3 - Q, 0}, {0, 1}, 1}],
SFAD[{{p1 + p2 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}], {p1 -> p2, p2 -> p1, p3 -> p3},
SFAD[fctopology5, {n1_, n3_, n2_, n4_, n6_, n5_, n7_, n8_, n9_}] :>
GLI[fctopology2, {n1, n2, n3, n4, n5, n6, n7, n8, n9}]}} GLI
\left( \begin{array}{ccc} \;\text{FCTopology}\left(\text{fctopology3},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p1}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right) & \{\text{p1}\to -\text{p1}-\text{p3}+Q,\text{p2}\to -\text{p2}-\text{p3}+Q,\text{p3}\to \;\text{p3}\} & G^{\text{fctopology3}}(\text{n1$\_$},\text{n7$\_$},\text{n8$\_$},\text{n5$\_$},\text{n6$\_$},\text{n4$\_$},\text{n2$\_$},\text{n3$\_$},\text{n9$\_$}):\to G^{\text{fctopology1}}(\text{n1},\text{n2},\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9}) \\ \;\text{FCTopology}\left(\text{fctopology4},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p1}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right) & \{\text{p1}\to Q-\text{p2},\text{p2}\to Q-\text{p1},\text{p3}\to -\text{p3}\} & G^{\text{fctopology4}}(\text{n1$\_$},\text{n6$\_$},\text{n5$\_$},\text{n8$\_$},\text{n7$\_$},\text{n3$\_$},\text{n2$\_$},\text{n4$\_$},\text{n9$\_$}):\to G^{\text{fctopology1}}(\text{n1},\text{n2},\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9}) \\ \;\text{FCTopology}\left(\text{fctopology5},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p1}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right) & \{\text{p1}\to \;\text{p2},\text{p2}\to \;\text{p1},\text{p3}\to \;\text{p3}\} & G^{\text{fctopology5}}(\text{n1$\_$},\text{n3$\_$},\text{n2$\_$},\text{n4$\_$},\text{n6$\_$},\text{n5$\_$},\text{n7$\_$},\text{n8$\_$},\text{n9$\_$}):\to G^{\text{fctopology2}}(\text{n1},\text{n2},\text{n3},\text{n4},\text{n5},\text{n6},\text{n7},\text{n8},\text{n9}) \\ \end{array} \right)
These are the two topologies onto which everything is mapped
= {
finalTopos [fctopology1, {SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1, 0}, {0, 1}, 1}], SFAD[{{p2 + p3, 0}, {0, 1}, 1}], SFAD[{{p2 - Q, 0}, {0, 1}, 1}],
FCTopology[{{p1 - Q, 0}, {0, 1}, 1}], SFAD[{{p2 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}],
SFAD[fctopology2, {SFAD[{{p3, 0}, {0, 1}, 1}], SFAD[{{p2, 0}, {0, 1}, 1}], SFAD[{{p1, 0}, {0, 1}, 1}], SFAD[{{p2 + p3, 0}, {0, 1}, 1}], SFAD[{{p2 - Q, 0}, {0, 1}, 1}],
FCTopology[{{p1 - Q, 0}, {0, 1}, 1}], SFAD[{{p2 + p3 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 - Q, 0}, {0, 1}, 1}], SFAD[{{p1 + p2 + p3 - Q, 0}, {0, 1}, 1}]}, {p1, p2, p3}, {Q}, {}, {}]} SFAD
\left\{\text{FCTopology}\left(\text{fctopology1},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right),\text{FCTopology}\left(\text{fctopology2},\left\{\frac{1}{(\text{p3}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{((\text{p2}+\text{p3})^2+i \eta )},\frac{1}{((\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}-Q)^2+i \eta )},\frac{1}{((\text{p2}+\text{p3}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}-Q)^2+i \eta )},\frac{1}{((\text{p1}+\text{p2}+\text{p3}-Q)^2+i \eta )}\right\},\{\text{p1},\text{p2},\text{p3}\},\{Q\},\{\},\{\}\right)\right\}
FCLoopApplyTopologyMappings
applies the given mappings
to the expression creating an output that is ready to be processed
further
[ex, {mappings, finalTopos}, Head -> gliProduct, FCVerbose -> 0] FCLoopApplyTopologyMappings
\frac{1}{2} G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1) \left(\text{cc1} Q^2+\text{cc4} Q^2+2 \;\text{cc6}\right)+\frac{1}{2} (\text{cc1}-\text{cc4}) G^{\text{fctopology1}}(1,1,0,1,1,1,1,1,1)-\frac{1}{2} (\text{cc1}-\text{cc4}) G^{\text{fctopology1}}(1,1,1,1,1,0,1,1,1)+\frac{1}{2} Q^2 (\text{cc2}+\text{cc5}) G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)-\frac{1}{2} (\text{cc2}+\text{cc5}) G^{\text{fctopology2}}(1,1,1,1,1,0,1,1,1)-\frac{1}{2} \;\text{cc2} G^{\text{fctopology2}}(1,1,1,1,0,1,1,1,1)+\frac{1}{2} \;\text{cc2} G^{\text{fctopology2}}(1,1,1,1,1,1,1,0,1)+\text{cc3} G^{\text{fctopology1}}(1,1,1,1,1,1,0,1,1)+\frac{1}{2} \;\text{cc4} G^{\text{fctopology1}}(0,1,1,1,1,1,1,1,1)-\frac{1}{2} \;\text{cc4} G^{\text{fctopology1}}(1,1,1,0,1,1,1,1,1)-\frac{1}{2} \;\text{cc4} G^{\text{fctopology1}}(1,1,1,1,1,1,1,0,1)+\frac{1}{2} \;\text{cc4} G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,0)+\frac{1}{2} \;\text{cc5} G^{\text{fctopology2}}(1,1,0,1,1,1,1,1,1)
This just applies the mappings without any further simplifications
[ex, {mappings, finalTopos}, Head -> gliProduct, FCLoopCreateRulesToGLI -> False] FCLoopApplyTopologyMappings
\text{gliProduct}\left(\text{cc3} (-\text{p2}-\text{p3}+Q)^2,G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc4} ((Q-\text{p1})\cdot (Q-\text{p2})),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc1} (\text{p1}\cdot Q),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc2} (\text{p1}\cdot \;\text{p2}),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc5} (\text{p1}\cdot Q),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc6} \;\text{p1}^2,G^{\text{fctopology1}}(1,1,2,1,1,1,1,1,1)\right)
This applies the mappings and eliminates the numerators but still
keeps products of GLI
s in the expression
[ex, {mappings, finalTopos}, Head -> gliProduct, FCLoopCreateRulesToGLI -> True, GLIMultiply -> False] FCLoopApplyTopologyMappings
\text{gliProduct}\left(\frac{1}{2} \;\text{cc1} \left(G^{\text{fctopology1}}(0,0,-1,0,0,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,0,0,-1,0,0,0)+Q^2\right),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\frac{1}{2} \;\text{cc2} \left(-G^{\text{fctopology2}}(0,0,0,0,-1,0,0,0,0)-G^{\text{fctopology2}}(0,0,0,0,0,-1,0,0,0)+G^{\text{fctopology2}}(0,0,0,0,0,0,0,-1,0)+Q^2\right),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc3} G^{\text{fctopology1}}(0,0,0,0,0,0,-1,0,0),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc4} \left(\frac{1}{2} \left(-G^{\text{fctopology1}}(0,-1,0,0,0,0,0,0,0)+G^{\text{fctopology1}}(0,0,0,0,-1,0,0,0,0)-Q^2\right)+\frac{1}{2} \left(-G^{\text{fctopology1}}(0,0,-1,0,0,0,0,0,0)+G^{\text{fctopology1}}(0,0,0,0,0,-1,0,0,0)-Q^2\right)+\frac{1}{2} \left(G^{\text{fctopology1}}(-1,0,0,0,0,0,0,0,0)+G^{\text{fctopology1}}(0,-1,0,0,0,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,-1,0,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,0,-1,0,0,0,0)-G^{\text{fctopology1}}(0,0,0,0,0,0,0,-1,0)+G^{\text{fctopology1}}(0,0,0,0,0,0,0,0,-1)+Q^2\right)+Q^2\right),G^{\text{fctopology1}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\frac{1}{2} \;\text{cc5} \left(G^{\text{fctopology2}}(0,0,-1,0,0,0,0,0,0)-G^{\text{fctopology2}}(0,0,0,0,0,-1,0,0,0)+Q^2\right),G^{\text{fctopology2}}(1,1,1,1,1,1,1,1,1)\right)+\text{gliProduct}\left(\text{cc6} G^{\text{fctopology1}}(0,0,-1,0,0,0,0,0,0),G^{\text{fctopology1}}(1,1,2,1,1,1,1,1,1)\right)