FCJoinDOTs
is an option for DotSimplify
and
other functions that use DotSimplify
internally. When set
to True
, DotSimplify
will try to rewrite
expressions like A.X.B + A.Y.B
as
A.(X+Y).B
.
Notice that although the default value of FCJoinDOTs
is
True
, the corresponding transformations will occur only if
the option Expanding
is set to False
(default:
True
)
[A, B, X, Y] DeclareNonCommutative
[A . X . B + A . Y . B] DotSimplify
A.X.B+A.Y.B
[A . X . B + A . Y . B, FCJoinDOTs -> True] DotSimplify
A.X.B+A.Y.B
[A . X . B + A . Y . B, FCJoinDOTs -> True, Expanding -> False] DotSimplify
A.(X+Y).B
[GA[mu, 6, nu] + GA[mu, 7, nu], FCJoinDOTs -> True, Expanding -> False] DotSimplify
\bar{\gamma }^{\text{mu}}.\left(\bar{\gamma }^6+\bar{\gamma }^7\right).\bar{\gamma }^{\text{nu}}