FCIteratedIntegralEvaluate[ex]
evaluates iterated
integrals in ex in terms of multiple polylogarithms.
To that aim the ex
must contain ration functions (in the
FCPartialFractionForm
notation) and possibly
FCGPL
s wrapped with FCIteratedIntegral
heads
Overview, FCIteratedIntegral, FCIteratedIntegralSimplify, FCGPL.
= FCPartialFractionForm[0, {{{-a + x[2], -1}, (1 + a + x[3])^(-2)},
int {{1 + x[2] + x[3], -2}, -(1 + a + x[3])^(-1)}, {{1 + x[2] + x[3], -1}, -(1 + a + x[3])^(-2)}}, x[2]]
\text{FCPartialFractionForm}\left(0,\left( \begin{array}{cc} \{x(2)-a,-1\} & \frac{1}{(a+x(3)+1)^2} \\ \{x(2)+x(3)+1,-2\} & -\frac{1}{a+x(3)+1} \\ \{x(2)+x(3)+1,-1\} & -\frac{1}{(a+x(3)+1)^2} \\ \end{array} \right),x(2)\right)
[FCIteratedIntegral[int, x[2], 0, Infinity]] FCIteratedIntegralEvaluate
-\text{FCPartialFractionForm}\left(0,\left( \begin{array}{cc} \{\infty ,-1\} & -\frac{1}{a+x(3)+1} \\ \end{array} \right),\infty \right)+\text{FCPartialFractionForm}\left(0,\left( \begin{array}{cc} \{x(3)+1,-1\} & -\frac{1}{a+x(3)+1} \\ \end{array} \right),0\right)-\frac{G(-x[3]-1; \infty )}{(a+x(3)+1)^2}+\frac{G(a; \infty )}{(a+x(3)+1)^2}
[FCIteratedIntegral[int, x[2], 0, x[2]]] FCIteratedIntegralEvaluate
\text{FCPartialFractionForm}\left(0,\left( \begin{array}{cc} \{x(3)+1,-1\} & -\frac{1}{a+x(3)+1} \\ \end{array} \right),0\right)-\text{FCPartialFractionForm}\left(0,\left( \begin{array}{cc} \{x(2)+x(3)+1,-1\} & -\frac{1}{a+x(3)+1} \\ \end{array} \right),x(2)\right)+\frac{G(a; x[2])}{(a+x(3)+1)^2}-\frac{G(-x[3]-1; x[2])}{(a+x(3)+1)^2}