FeynCalc offers further useful functions for the manipulations of Lorentz tensors and Dirac matrices. To expand scalar products
= SP[p + q + r, s + t] ex1
(\overline{p}+\overline{q}+\overline{r})\cdot (\overline{s}+\overline{t})
or expressions like
= FV[p + q + r, \[Mu]] ex2
\left(\overline{p}+\overline{q}+\overline{r}\right)^{\mu }
one can use
[ex1] ExpandScalarProduct
\overline{p}\cdot \overline{s}+\overline{p}\cdot \overline{t}+\overline{q}\cdot \overline{s}+\overline{q}\cdot \overline{t}+\overline{r}\cdot \overline{s}+\overline{r}\cdot \overline{t}
[ex2] ExpandScalarProduct
\overline{p}^{\mu }+\overline{q}^{\mu }+\overline{r}^{\mu }
For the expansion of Eps
tensors, we use
[][p1 + p2, q, r, s]
LC[%] EpsEvaluate
\bar{\epsilon }^{\overline{\text{p1}}+\overline{\text{p2}}\overline{q}\overline{r}\overline{s}}
\bar{\epsilon }^{\overline{\text{p1}}\overline{q}\overline{r}\overline{s}}+\bar{\epsilon }^{\overline{\text{p2}}\overline{q}\overline{r}\overline{s}}
EpsEvaluate also reorders the arguments of Eps according to its antisymmetric properties
[\[Mu], \[Sigma], \[Rho], \[Nu]]
LC[%] EpsEvaluate
\bar{\epsilon }^{\mu \sigma \rho \nu }
-\bar{\epsilon }^{\mu \nu \rho \sigma }
The inverse of ExpandScalarProduct
is called
MomentumCombine
3 FV[p, \[Mu]] + 4 FV[q, \[Mu]]
[%] MomentumCombine
3 \overline{p}^{\mu }+4 \overline{q}^{\mu }
\left(3 \overline{p}+4 \overline{q}\right)^{\mu }
For Dirac matrices the corresponding functions are
DiracGammaExpand
and DiracGammaCombine
[\[Mu]] . GS[p + q] . GA[\[Nu]] . GS[r + s]
GA[%]
DiracGammaExpand[%] DiracGammaCombine
\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \left(\overline{p}+\overline{q}\right)\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \left(\overline{r}+\overline{s}\right)\right)
\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}+\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \overline{r}+\bar{\gamma }\cdot \overline{s}\right)
\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \left(\overline{p}+\overline{q}\right)\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \left(\overline{r}+\overline{s}\right)\right)
Notice the DiracGammaExpand
does not expand the whole
noncommutative product. If you need that, use
DotSimplify
[\[Mu]] . GS[p + q] . GA[\[Nu]] . GS[r + s]
GA% // DiracGammaExpand // DotSimplify
\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \left(\overline{p}+\overline{q}\right)\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \left(\overline{r}+\overline{s}\right)\right)
\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \overline{r}\right)+\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{p}\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \overline{s}\right)+\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \overline{r}\right)+\bar{\gamma }^{\mu }.\left(\bar{\gamma }\cdot \overline{q}\right).\bar{\gamma }^{\nu }.\left(\bar{\gamma }\cdot \overline{s}\right)