ExpandScalarProduct[expr]
expands scalar products of
sums of momenta in expr
.
ExpandScalarProduct
does not use Expand
on
expr
.
Overview, Calc, MomentumExpand, MomentumCombine, FCVariable
[p1 + p2 + p3, p4 + p5 + p6]
SP
% // ExpandScalarProduct
(\overline{\text{p1}}+\overline{\text{p2}}+\overline{\text{p3}})\cdot (\overline{\text{p4}}+\overline{\text{p5}}+\overline{\text{p6}})
\overline{\text{p1}}\cdot \overline{\text{p4}}+\overline{\text{p1}}\cdot \overline{\text{p5}}+\overline{\text{p1}}\cdot \overline{\text{p6}}+\overline{\text{p2}}\cdot \overline{\text{p4}}+\overline{\text{p2}}\cdot \overline{\text{p5}}+\overline{\text{p2}}\cdot \overline{\text{p6}}+\overline{\text{p3}}\cdot \overline{\text{p4}}+\overline{\text{p3}}\cdot \overline{\text{p5}}+\overline{\text{p3}}\cdot \overline{\text{p6}}
[p, p - q]
SP
[%] ExpandScalarProduct
\overline{p}\cdot (\overline{p}-\overline{q})
\overline{p}^2-\overline{p}\cdot \overline{q}
[p - q, \[Mu]]
FV
[%] ExpandScalarProduct
\left(\overline{p}-\overline{q}\right)^{\mu }
\overline{p}^{\mu }-\overline{q}^{\mu }
[p - q, q - r]
SPD
[%] ExpandScalarProduct
(p-q)\cdot (q-r)
p\cdot q-p\cdot r+q\cdot r-q^2
Using the option Momentum
one can limit the expansion to
particular momenta
[p1 + p2 + p3, p4 + p5 + p6]
SP
[%, Momentum -> {p1}] ExpandScalarProduct
(\overline{\text{p1}}+\overline{\text{p2}}+\overline{\text{p3}})\cdot (\overline{\text{p4}}+\overline{\text{p5}}+\overline{\text{p6}})
\overline{\text{p1}}\cdot (\overline{\text{p4}}+\overline{\text{p5}}+\overline{\text{p6}})+(\overline{\text{p2}}+\overline{\text{p3}})\cdot (\overline{\text{p4}}+\overline{\text{p5}}+\overline{\text{p6}})
By default ExpandScalarProduct
does not apply linearity
to Levi-Civita tensors
[\[Mu]][p1 + p2, p3 + p4, p5 + p6]
LC
[%] ExpandScalarProduct
\bar{\epsilon }^{\mu \overline{\text{p1}}+\overline{\text{p2}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}
\bar{\epsilon }^{\mu \overline{\text{p1}}+\overline{\text{p2}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}
Using the option EpsEvaluate
takes care of that
[\[Mu]][p1 + p2, p3 + p4, p5 + p6]
LC
[%, EpsEvaluate -> True] ExpandScalarProduct
\bar{\epsilon }^{\mu \overline{\text{p1}}+\overline{\text{p2}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}
\bar{\epsilon }^{\mu \overline{\text{p1}}\;\overline{\text{p3}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\mu \overline{\text{p1}}\;\overline{\text{p3}}\;\overline{\text{p6}}}+\bar{\epsilon }^{\mu \overline{\text{p1}}\;\overline{\text{p4}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\mu \overline{\text{p1}}\;\overline{\text{p4}}\;\overline{\text{p6}}}+\bar{\epsilon }^{\mu \overline{\text{p2}}\;\overline{\text{p3}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\mu \overline{\text{p2}}\;\overline{\text{p3}}\;\overline{\text{p6}}}+\bar{\epsilon }^{\mu \overline{\text{p2}}\;\overline{\text{p4}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\mu \overline{\text{p2}}\;\overline{\text{p4}}\;\overline{\text{p6}}}
One can use the options EpsEvaluate
and
Momentum
together
[\[Mu]][p1 + p2, p3 + p4, p5 + p6]
LC
[%, EpsEvaluate -> True, Momentum -> {p1}] ExpandScalarProduct
\bar{\epsilon }^{\mu \overline{\text{p1}}+\overline{\text{p2}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}
\bar{\epsilon }^{\mu \overline{\text{p1}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}+\bar{\epsilon }^{\mu \overline{\text{p2}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}
Of course, the function is also applicable to Cartesian quantities
[p1 + p2, p3 + p4]
CSP
[%] ExpandScalarProduct
(\overline{\text{p1}}+\overline{\text{p2}})\cdot (\overline{\text{p3}}+\overline{\text{p4}})
\overline{\text{p1}}\cdot \overline{\text{p3}}+\overline{\text{p1}}\cdot \overline{\text{p4}}+\overline{\text{p2}}\cdot \overline{\text{p3}}+\overline{\text{p2}}\cdot \overline{\text{p4}}
[][p1 + p2, p3 + p4, p5 + p6]
CLC
[%, EpsEvaluate -> True] ExpandScalarProduct
\bar{\epsilon }^{\overline{\text{p1}}+\overline{\text{p2}}\;\overline{\text{p3}}+\overline{\text{p4}}\;\overline{\text{p5}}+\overline{\text{p6}}}
\bar{\epsilon }^{\overline{\text{p1}}\;\overline{\text{p3}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\overline{\text{p1}}\;\overline{\text{p3}}\;\overline{\text{p6}}}+\bar{\epsilon }^{\overline{\text{p1}}\;\overline{\text{p4}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\overline{\text{p1}}\;\overline{\text{p4}}\;\overline{\text{p6}}}+\bar{\epsilon }^{\overline{\text{p2}}\;\overline{\text{p3}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\overline{\text{p2}}\;\overline{\text{p3}}\;\overline{\text{p6}}}+\bar{\epsilon }^{\overline{\text{p2}}\;\overline{\text{p4}}\;\overline{\text{p5}}}+\bar{\epsilon }^{\overline{\text{p2}}\;\overline{\text{p4}}\;\overline{\text{p6}}}
Sometimes one would like to have external momenta multiplied by
symbolic parameters in the propagators. In this case one should first
declare the corresponding variables to be of FCVariable
type
[a, FCVariable] = True;
DataType[b, FCVariable] = True; DataType
[SP[P, Q] /. P -> a P1 + b P2]
ExpandScalarProduct
StandardForm[%]
a \left(\overline{\text{P1}}\cdot \overline{Q}\right)+b \left(\overline{\text{P2}}\cdot \overline{Q}\right)
(*a Pair[Momentum[P1], Momentum[Q]] + b Pair[Momentum[P2], Momentum[Q]]*)