Dirac algebra
See also
Overview.
Simplifications of Dirac
matrix chains
The two most relevant functions for the manipulations of Dirac
matrices are DiracSimplify
and DiracTrace
.
The goal of DiracSimplify
is to eliminate all pairs of
Dirac matrices with the equal indices or contracted with the same 4-vectors
GA[\[Mu]] . GS[p + m] . GA[\[Mu]]
DiracSimplify[%]
γˉμ.(γˉ⋅(m+p)).γˉμ
−2γˉ⋅m−2γˉ⋅p
GA[\[Mu]] . GS[p + m1] . GA[\[Nu]] . GS[p + m2]
DiracSimplify[%]
γˉμ.(γˉ⋅(m1+p)).γˉν.(γˉ⋅(m2+p))
γˉμ.(γˉ⋅m1).γˉν.(γˉ⋅m2)+γˉμ.(γˉ⋅m1).γˉν.(γˉ⋅p)+γˉμ.(γˉ⋅p).γˉν.(γˉ⋅m2)−p2γˉμ.γˉν+2pνγˉμ.(γˉ⋅p)
DiracTrace
is used for the evaluation of Dirac traces.
The trace is not evaluated by default
DiracTrace[GA[\[Mu], \[Nu]]]
tr(γˉμ.γˉν)
To obtain the result we can either use the option
DiracTraceEvaluate
DiracTrace[GA[\[Mu], \[Nu]], DiracTraceEvaluate -> True]
4gˉμν
or use DiracSimplify
instead.
DiracTrace[GA[\[Mu], \[Nu]]] // DiracSimplify
4gˉμν
By default FeynCalc refuses to compute a D-dimensional trace that contains γ5
DiracTrace[GAD[\[Alpha], \[Beta], \[Mu], \[Nu], \[Rho], \[Sigma], 5]] // DiracSimplify
tr(γα.γβ.γμ.γν.γρ.γσ.γˉ5)
This is because by default FeynCalc is using anticommuting γ5 in D-dimensions, a scheme known as Naive
Dimensional Regularization (NDR)
DiracSimplify[GAD[\[Mu]] . GA[5] . GAD[\[Nu]]]
−γμ.γν.γˉ5
In general, a chiral trace is a very ambiguous object in NDR. The
results depends on the position of γ5 inside the trace, so that we chose
not to produce results that might be potentially inconsistent. However,
FeynCalc can also be told to use the
Breitenlohner-Maison-t’Hooft-Veltman scheme (BMHV), which is an
algebraically consistent scheme (but has other issues, e.g. it breaks
Ward identities)
FCSetDiracGammaScheme["BMHV"];
Notice that now FeynCalc anticommutes γ5 according to the BMHV algebra, which
leads to the appearance of D−4-dimensional Dirac matrices
DiracSimplify[GAD[\[Mu]] . GA[5] . GAD[\[Nu]]]
2γμ.γ^ν.γˉ5−γμ.γν.γˉ5
Also Dirac traces are not an issue now
DiracTrace[GAD[\[Alpha], \[Beta], \[Mu], \[Nu], \[Rho], \[Sigma]] . GA[5]] // DiracSimplify
−4igαβϵˉμνρσ+4igαμϵˉβνρσ−4igανϵˉβμρσ+4igαρϵˉβμνσ−4igασϵˉβμνρ−4igβμϵˉανρσ+4igβνϵˉαμρσ−4igβρϵˉαμνσ+4igβσϵˉαμνρ−4igμνϵˉαβρσ+4igμρϵˉαβνσ−4igμσϵˉαβνρ−4igνρϵˉαβμσ+4igνσϵˉαβμρ−4igρσϵˉαβμν
To compute chiral traces in the BMHV scheme, FeynCalc uses West’s formula. Still,
NDR is the default scheme in FeynCalc.
In tree-level calculation a useful operation is the so-called
SPVAT-decomposition of Dirac chains. This is done using
DiracReduce
GA[\[Mu], \[Nu], \[Rho]] . GS[p] . GA[\[Alpha]]
DiracReduce[%]
γˉμ.γˉν.γˉρ.(γˉ⋅p).γˉα
−igˉμνγˉ$MU($68).γˉ5ϵˉαρ$MU($68)p+igˉαργˉ$MU($70).γˉ5ϵˉμν$MU($70)p+ipαγˉ$MU($71).γˉ5ϵˉμνρ$MU($71)+ipργˉ$MU($72).γˉ5ϵˉαμν$MU($72)+γˉρpαgˉμν−γˉνpαgˉμρ−γˉρpμgˉαν+γˉνpμgˉαρ+γˉμpαgˉνρ+γˉαpμgˉνρ+γˉρpνgˉαμ−γˉμpνgˉαρ−γˉαpνgˉμρ−γˉνpρgˉαμ+γˉμpρgˉαν+γˉαpρgˉμν−gˉαρgˉμνγˉ⋅p+gˉανgˉμργˉ⋅p−gˉαμgˉνργˉ⋅p−iγˉν.γˉ5ϵˉαμρp+iγˉμ.γˉ5ϵˉανρp
Gordon’s identities are implemented via
GordonSimplify
SpinorUBar[p1, m1] . GA[\[Mu]] . SpinorU[p2, m2]
GordonSimplify[%]
uˉ(p1,m1).γˉμ.u(p2,m2)
m1+m2(p1+p2)μ(φ(p1,m1)).(φ(p2,m2))+m1+m2i(φ(p1,m1)).σμp1−p2.(φ(p2,m2))
It is possible to reorder the free indices in a chain of Dirac
matrices, which can sometimes help to simplify the expressions
DiracOrder[GA[\[Mu], \[Nu], \[Rho]], {\[Nu], \[Mu]}]
2γˉρgˉμν−γˉν.γˉμ.γˉρ
However, since this procedure is computationally expensive,
DiracSimplify
will not apply it by default
DiracSimplify[GAD[\[Mu], \[Nu]] + GAD[\[Nu], \[Mu]]]
γμ.γν+γν.γμ
It can be activated via the option DiracOrder
DiracSimplify[GAD[\[Mu], \[Nu]] + GAD[\[Nu], \[Mu]], DiracOrder -> True]
2gμν