Chisholm[exp]
substitutes products of three Dirac
matrices or slashes by the Chisholm identity.
[\[Mu], \[Nu], \[Rho]]
GA
[%] EpsChisholm
\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }.\bar{\gamma }^{\rho }
\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }.\bar{\gamma }^{\rho }
Notice that the output contains dummy indices.
[\[Alpha], \[Beta], \[Mu], \[Nu]]
GA
[%] Chisholm
\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }
i \bar{\gamma }^{\alpha }.\bar{\gamma }^{\text{\$MU}(\text{\$22})}.\bar{\gamma }^5 \bar{\epsilon }^{\beta \mu \nu \;\text{\$MU}(\text{\$22})}+\bar{\gamma }^{\alpha }.\bar{\gamma }^{\nu } \bar{g}^{\beta \mu }-\bar{\gamma }^{\alpha }.\bar{\gamma }^{\mu } \bar{g}^{\beta \nu }+\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta } \bar{g}^{\mu \nu }
Dummy Lorentz indices may also appear as FCGV.
[p1, m1] . GA[\[Alpha], \[Beta], \[Mu], \[Nu]] . SpinorU[p2, m2]
SpinorVBar
[%] Chisholm
\bar{v}(\text{p1},\text{m1}).\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }.u(\text{p2},\text{m2})
i \bar{\epsilon }^{\beta \mu \nu \;\text{\$MU}(\text{\$31})} \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\alpha }.\bar{\gamma }^{\text{\$MU}(\text{\$31})}.\bar{\gamma }^5.\left(\varphi (\overline{\text{p2}},\text{m2})\right)+\bar{g}^{\beta \mu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\alpha }.\bar{\gamma }^{\nu }.\left(\varphi (\overline{\text{p2}},\text{m2})\right)-\bar{g}^{\beta \nu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\alpha }.\bar{\gamma }^{\mu }.\left(\varphi (\overline{\text{p2}},\text{m2})\right)+\bar{g}^{\mu \nu } \left(\varphi (-\overline{\text{p1}},\text{m1})\right).\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\left(\varphi (\overline{\text{p2}},\text{m2})\right)
Chisholm only works with Dirac matrices in 4 dimensions, D-dimensional objects are ignored.
[GAD[\[Mu], \[Nu], \[Rho]]] Chisholm
\gamma ^{\mu }.\gamma ^{\nu }.\gamma ^{\rho }
[GA[\[Alpha], \[Beta], \[Mu]]] . Chisholm[GA[\[Alpha], \[Beta], \[Mu]]]
Chisholm
[%] DiracSimplify
\left(i \bar{\gamma }^{\text{\$MU}(\text{\$58})}.\bar{\gamma }^5 \bar{\epsilon }^{\alpha \beta \mu \;\text{\$MU}(\text{\$58})}+\bar{\gamma }^{\mu } \bar{g}^{\alpha \beta }-\bar{\gamma }^{\beta } \bar{g}^{\alpha \mu }+\bar{\gamma }^{\alpha } \bar{g}^{\beta \mu }\right).\left(i \bar{\gamma }^{\text{\$MU}(\text{\$67})}.\bar{\gamma }^5 \bar{\epsilon }^{\alpha \beta \mu \;\text{\$MU}(\text{\$67})}+\bar{\gamma }^{\mu } \bar{g}^{\alpha \beta }-\bar{\gamma }^{\beta } \bar{g}^{\alpha \mu }+\bar{\gamma }^{\alpha } \bar{g}^{\beta \mu }\right)
16
[GA[\[Alpha], \[Beta], \[Mu], \[Nu]]] . Chisholm[GA[\[Alpha], \[Beta], \[Mu], \[Nu]]]
Chisholm
[%] DiracSimplify
\left(i \bar{\gamma }^{\alpha }.\bar{\gamma }^{\text{\$MU}(\text{\$81})}.\bar{\gamma }^5 \bar{\epsilon }^{\beta \mu \nu \;\text{\$MU}(\text{\$81})}+\bar{\gamma }^{\alpha }.\bar{\gamma }^{\nu } \bar{g}^{\beta \mu }-\bar{\gamma }^{\alpha }.\bar{\gamma }^{\mu } \bar{g}^{\beta \nu }+\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta } \bar{g}^{\mu \nu }\right).\left(i \bar{\gamma }^{\alpha }.\bar{\gamma }^{\text{\$MU}(\text{\$90})}.\bar{\gamma }^5 \bar{\epsilon }^{\beta \mu \nu \;\text{\$MU}(\text{\$90})}+\bar{\gamma }^{\alpha }.\bar{\gamma }^{\nu } \bar{g}^{\beta \mu }-\bar{\gamma }^{\alpha }.\bar{\gamma }^{\mu } \bar{g}^{\beta \nu }+\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta } \bar{g}^{\mu \nu }\right)
-128
[p, q, r]
GS
[%] Chisholm
\left(\bar{\gamma }\cdot \overline{p}\right).\left(\bar{\gamma }\cdot \overline{q}\right).\left(\bar{\gamma }\cdot \overline{r}\right)
-i \bar{\gamma }^{\text{\$MU}(\text{\$116})}.\bar{\gamma }^5 \bar{\epsilon }^{\text{\$MU}(\text{\$116})\overline{p}\overline{q}\overline{r}}+\left(\overline{p}\cdot \overline{q}\right) \bar{\gamma }\cdot \overline{r}-\left(\overline{p}\cdot \overline{r}\right) \bar{\gamma }\cdot \overline{q}+\bar{\gamma }\cdot \overline{p} \left(\overline{q}\cdot \overline{r}\right)
[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]]
GA
[%] Chisholm
\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }.\bar{\gamma }^{\rho }.\bar{\gamma }^{\sigma }.\bar{\gamma }^{\tau }.\bar{\gamma }^{\kappa }
i \bar{g}^{\nu \rho } \bar{\gamma }^{\mu }.\bar{\gamma }^{\text{\$MU}(\text{\$125})}.\bar{\gamma }^5 \bar{\epsilon }^{\kappa \sigma \tau \;\text{\$MU}(\text{\$125})}-i \bar{g}^{\kappa \sigma } \bar{\gamma }^{\mu }.\bar{\gamma }^{\text{\$MU}(\text{\$127})}.\bar{\gamma }^5 \bar{\epsilon }^{\nu \rho \tau \;\text{\$MU}(\text{\$127})}+i \bar{g}^{\kappa \tau } \bar{\gamma }^{\mu }.\bar{\gamma }^{\text{\$MU}(\text{\$128})}.\bar{\gamma }^5 \bar{\epsilon }^{\nu \rho \sigma \;\text{\$MU}(\text{\$128})}+i \bar{g}^{\sigma \tau } \bar{\gamma }^{\mu }.\bar{\gamma }^{\text{\$MU}(\text{\$129})}.\bar{\gamma }^5 \bar{\epsilon }^{\kappa \nu \rho \;\text{\$MU}(\text{\$129})}-i \bar{\gamma }^{\mu }.\bar{\gamma }^{\rho }.\bar{\gamma }^5 \bar{\epsilon }^{\kappa \nu \sigma \tau }+i \bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }.\bar{\gamma }^5 \bar{\epsilon }^{\kappa \rho \sigma \tau }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\tau } \bar{g}^{\kappa \sigma } \bar{g}^{\nu \rho }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\sigma } \bar{g}^{\kappa \tau } \bar{g}^{\nu \rho }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\tau } \bar{g}^{\kappa \rho } \bar{g}^{\nu \sigma }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\rho } \bar{g}^{\kappa \tau } \bar{g}^{\nu \sigma }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\sigma } \bar{g}^{\kappa \rho } \bar{g}^{\nu \tau }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\rho } \bar{g}^{\kappa \sigma } \bar{g}^{\nu \tau }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\tau } \bar{g}^{\kappa \nu } \bar{g}^{\rho \sigma }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu } \bar{g}^{\kappa \tau } \bar{g}^{\rho \sigma }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\kappa } \bar{g}^{\nu \tau } \bar{g}^{\rho \sigma }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\sigma } \bar{g}^{\kappa \nu } \bar{g}^{\rho \tau }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu } \bar{g}^{\kappa \sigma } \bar{g}^{\rho \tau }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\kappa } \bar{g}^{\nu \sigma } \bar{g}^{\rho \tau }-\bar{\gamma }^{\mu }.\bar{\gamma }^{\rho } \bar{g}^{\kappa \nu } \bar{g}^{\sigma \tau }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu } \bar{g}^{\kappa \rho } \bar{g}^{\sigma \tau }+\bar{\gamma }^{\mu }.\bar{\gamma }^{\kappa } \bar{g}^{\nu \rho } \bar{g}^{\sigma \tau }
Check the equality of the expressions before and after applying
Chisholm
.
[GA[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]] . GA[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]]] DiracSimplify
-2048
[Chisholm[GA[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]]] . Chisholm[GA[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]]]] DiracSimplify
-2048
[GA[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]] . Chisholm[GA[\[Mu], \[Nu], \[Rho], \[Sigma], \[Tau], \[Kappa]]]] DiracReduce
-2048
Older FeynCalc versions had a function called Chisholm2
that acted on expressions like \gamma^{\mu}
\gamma^{\nu} \gamma^5. This functionality is now part of
Chisholm
and can be activated by setting the option
Mode
to 2
.
[\[Mu], \[Nu], 5]
GA
[%, Mode -> 2] Chisholm
\bar{\gamma }^{\mu }.\bar{\gamma }^{\nu }.\bar{\gamma }^5
\frac{1}{2} \sigma ^{\text{\$MU}(\text{\$1022})\text{\$MU}(\text{\$1023})} \bar{\epsilon }^{\mu \nu \;\text{\$MU}(\text{\$1022})\text{\$MU}(\text{\$1023})}+\bar{\gamma }^5 \bar{g}^{\mu \nu }