FeynCalc manual (development version)

AntiCommutator

AntiCommutator[x, y] = c defines the anti-commutator of the non commuting objects x and y.

See also

Overview, Commutator, CommutatorExplicit, DeclareNonCommutative, DotSimplify.

Examples

This declares a and b as noncommutative variables.

DeclareNonCommutative[a, b] 
 
AntiCommutator[a, b] 
 
CommutatorExplicit[%]

\{a,\medspace b\}

a.b+b.a

CommutatorExplicit[AntiCommutator[a + b, a - 2 b ]]

(a-2 b).(a+b)+(a+b).(a-2 b)

DotSimplify[AntiCommutator[a + b, a - 2 b ]]

-a.b-b.a+2 a.a-4 b.b

DeclareNonCommutative[c, d, ct, dt]

Defining {c,d} = z results in replacements of c.d by z-d.c.

AntiCommutator[c, d] = z 
 
DotSimplify[ d . c . d ]

z

d z-d.d.c

AntiCommutator[dt, ct] = zt

\text{zt}

DotSimplify[dt . ct . dt]

\text{dt} \;\text{zt}-\text{ct}.\text{dt}.\text{dt}

UnDeclareNonCommutative[a, b, c, d, ct, dt] 
 
UnDeclareAllAntiCommutators[]