Anti5[exp] anticommutes all \gamma^5 in exp to the right.
Anti5[exp, n] anticommutes all \gamma^5 n-times to the right.
Anti5[exp, -n] anticommutes all \gamma^5 n-times to the left.
Overview, DiracOrder, DiracSimplify, DiracTrick.
GA[5, \[Mu]]
Anti5[%]
Anti5[%, -1]\bar{\gamma }^5.\bar{\gamma }^{\mu }
-\bar{\gamma }^{\mu }.\bar{\gamma }^5
\bar{\gamma }^5.\bar{\gamma }^{\mu }
GA[5, \[Alpha], \[Beta], \[Gamma], \[Delta]]
Anti5[%, 2]
Anti5[%%, Infinity]
Anti5[%, -Infinity]\bar{\gamma }^5.\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^{\gamma }.\bar{\gamma }^{\delta }
\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^5.\bar{\gamma }^{\gamma }.\bar{\gamma }^{\delta }
\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^{\gamma }.\bar{\gamma }^{\delta }.\bar{\gamma }^5
\bar{\gamma }^5.\bar{\gamma }^{\alpha }.\bar{\gamma }^{\beta }.\bar{\gamma }^{\gamma }.\bar{\gamma }^{\delta }
In the naive \gamma^5-scheme D-dimensional \gamma-matrices anticommute with \gamma^5.
GA5 . GAD[\[Mu]]
Anti5[%]\bar{\gamma }^5.\gamma ^{\mu }
-\gamma ^{\mu }.\bar{\gamma }^5
Anti5 also works in the
t’Hooft-Veltman-Breitenlohner-Maison scheme
FCSetDiracGammaScheme["BMHV"];
Anti5[GA5 . GAD[\[Mu]]]2 \hat{\gamma }^{\mu }.\bar{\gamma }^5-\gamma ^{\mu }.\bar{\gamma }^5
FCSetDiracGammaScheme["NDR"];